Relativistic Effects on Entangled Single-Electron Traps
- URL: http://arxiv.org/abs/2406.17848v1
- Date: Tue, 25 Jun 2024 18:00:01 GMT
- Title: Relativistic Effects on Entangled Single-Electron Traps
- Authors: Marko Toroš, Patrick Andriolo, Martine Schut, Sougato Bose, Anupam Mazumdar,
- Abstract summary: In the relativistic regime, interactions between charged particles become affected by post-Coulombian corrections.
We look into the behaviour of quantum entanglement present in the static and dynamical regimes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The manipulation of individual charged particles has been deeply explored in physics's theoretical and experimental domains during the past decades. It is the pillar of several existing devices used for metrology and sensing and is a promising platform for realizing future technologies, such as quantum computers. It is also known that in the relativistic regime, interactions between charged particles become affected by post-Coulombian corrections, with the dominant couplings encoded in the Darwin Hamiltonian. The Darwin term has been extensively studied in atomic physics, where the interaction range is confined to the sub-angstrom scale. Still, there is a lack of understanding about whether (and when) Darwin's contributions are relevant at larger scales. In this paper, we explore the effects of these corrections in a system of two harmonically trapped electrons, where we look into the behaviour of quantum entanglement present in the static and dynamical regimes. We explore the parameter space of the developed model and seek frequencies, distances, and squeezing parameters for which relativistic effects become relevant for the generation of entanglement.
Related papers
- Relativistic single-electron wavepacket in quantum electromagnetic fields: Quantum coherence, correlations, and the Unruh effect [0.0]
We present a linearized effective theory using a Gaussian wavepacket description of a charged relativistic particle coupled to quantum electromagnetic fields.
We address the issues of decoherence of flying electrons in free space and the impact of Unruh effect on the electrons.
For a single electron accelerated in a uniform electric field, we identify the Unruh effect in the two-point correlators of the deviations from the electron's classical trajectory.
arXiv Detail & Related papers (2024-01-27T13:23:44Z) - Out-of-equilibrium dynamics of quantum many-body systems with long-range interactions [0.0]
Experimental progress in atomic, molecular, and optical platforms has stimulated strong and broad interest in quantum coherent dynamics.
This Report presents a systematic and organic review of recent advances in the field.
arXiv Detail & Related papers (2023-07-10T18:00:16Z) - Directionality between driven-dissipative resonators [0.0]
We present a model describing a pair of driven-dissipative quantum resonators, where the relative phase difference between the coherent and incoherent couplings induces an asymmetry.
The interplay between the diverse dissipative landscape - which encompasses both intrinsic losses and dissipative couplings - and the coherent interactions leads to some remarkable consequences.
Our work proffers the tantalizing prospect of observing dissipation-induced quantum directionality in areas like photonics or cavity magnonics.
arXiv Detail & Related papers (2022-12-24T17:00:13Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Theoretical proposals to measure resonator-induced modifications of the
electronic ground-state in doped quantum wells [13.569449459014104]
We investigate how virtual electronic excitations in quantum wells modify the ground-state charge distribution.
Our results provide a route toward a demonstration of cavity-induced modulation of ground-state electronic properties.
arXiv Detail & Related papers (2020-12-17T09:18:23Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.