Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization
- URL: http://arxiv.org/abs/2202.04753v1
- Date: Wed, 9 Feb 2022 22:29:48 GMT
- Title: Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization
- Authors: Adrianna Janik and Kris Sankaran
- Abstract summary: Concept discovery is important for bridging the gap between non-deep learning experts and model end-users.
Current approaches include hand-crafting concept datasets and then converting them to latent space directions.
In this study, we offer another two approaches to guide user discovery of meaningful concepts, one based on multiple hypothesis testing, and another on interactive visualization.
- Score: 0.76146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept discovery is one of the open problems in the interpretability
literature that is important for bridging the gap between non-deep learning
experts and model end-users. Among current formulations, concepts defines them
by as a direction in a learned representation space. This definition makes it
possible to evaluate whether a particular concept significantly influences
classification decisions for classes of interest. However, finding relevant
concepts is tedious, as representation spaces are high-dimensional and hard to
navigate. Current approaches include hand-crafting concept datasets and then
converting them to latent space directions; alternatively, the process can be
automated by clustering the latent space. In this study, we offer another two
approaches to guide user discovery of meaningful concepts, one based on
multiple hypothesis testing, and another on interactive visualization. We
explore the potential value and limitations of these approaches through
simulation experiments and an demo visual interface to real data. Overall, we
find that these techniques offer a promising strategy for discovering relevant
concepts in settings where users do not have predefined descriptions of them,
but without completely automating the process.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Knowledge graphs for empirical concept retrieval [1.06378109904813]
Concept-based explainable AI is promising as a tool to improve the understanding of complex models at the premises of a given user.
Here, we present a workflow for user-driven data collection in both text and image domains.
We test the retrieved concept datasets on two concept-based explainability methods, namely concept activation vectors (CAVs) and concept activation regions (CARs)
arXiv Detail & Related papers (2024-04-10T13:47:22Z) - Explaining Explainability: Understanding Concept Activation Vectors [35.37586279472797]
Recent interpretability methods propose using concept-based explanations to translate internal representations of deep learning models into a language that humans are familiar with: concepts.
This requires understanding which concepts are present in the representation space of a neural network.
In this work, we investigate three properties of Concept Activation Vectors (CAVs), which are learnt using a probe dataset of concept exemplars.
We introduce tools designed to detect the presence of these properties, provide insight into how they affect the derived explanations, and provide recommendations to minimise their impact.
arXiv Detail & Related papers (2024-04-04T17:46:20Z) - Uncovering Unique Concept Vectors through Latent Space Decomposition [0.0]
Concept-based explanations have emerged as a superior approach that is more interpretable than feature attribution estimates.
We propose a novel post-hoc unsupervised method that automatically uncovers the concepts learned by deep models during training.
Our experiments reveal that the majority of our concepts are readily understandable to humans, exhibit coherency, and bear relevance to the task at hand.
arXiv Detail & Related papers (2023-07-13T17:21:54Z) - From Attribution Maps to Human-Understandable Explanations through
Concept Relevance Propagation [16.783836191022445]
The field of eXplainable Artificial Intelligence (XAI) aims to bring transparency to today's powerful but opaque deep learning models.
While local XAI methods explain individual predictions in form of attribution maps, global explanation techniques visualize what concepts a model has generally learned to encode.
arXiv Detail & Related papers (2022-06-07T12:05:58Z) - Self-Supervised Visual Representation Learning with Semantic Grouping [50.14703605659837]
We tackle the problem of learning visual representations from unlabeled scene-centric data.
We propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning.
arXiv Detail & Related papers (2022-05-30T17:50:59Z) - Learnable Visual Words for Interpretable Image Recognition [70.85686267987744]
We propose the Learnable Visual Words (LVW) to interpret the model prediction behaviors with two novel modules.
The semantic visual words learning relaxes the category-specific constraint, enabling the general visual words shared across different categories.
Our experiments on six visual benchmarks demonstrate the superior effectiveness of our proposed LVW in both accuracy and model interpretation.
arXiv Detail & Related papers (2022-05-22T03:24:45Z) - Separating Skills and Concepts for Novel Visual Question Answering [66.46070380927372]
Generalization to out-of-distribution data has been a problem for Visual Question Answering (VQA) models.
"Skills" are visual tasks, such as counting or attribute recognition, and are applied to "concepts" mentioned in the question.
We present a novel method for learning to compose skills and concepts that separates these two factors implicitly within a model.
arXiv Detail & Related papers (2021-07-19T18:55:10Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
We present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines' capability of learning generalizable concepts.
In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images.
We undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3.
arXiv Detail & Related papers (2021-03-02T01:32:54Z) - Learning Interpretable Concept-Based Models with Human Feedback [36.65337734891338]
We propose an approach for learning a set of transparent concept definitions in high-dimensional data that relies on users labeling concept features.
Our method produces concepts that both align with users' intuitive sense of what a concept means, and facilitate prediction of the downstream label by a transparent machine learning model.
arXiv Detail & Related papers (2020-12-04T23:41:05Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.