論文の概要: Target-aware Molecular Graph Generation
- arxiv url: http://arxiv.org/abs/2202.04829v1
- Date: Thu, 10 Feb 2022 04:31:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-11 14:40:18.450330
- Title: Target-aware Molecular Graph Generation
- Title(参考訳): 標的認識分子グラフ生成
- Authors: Cheng Tan, Zhangyang Gao, Stan Z. Li
- Abstract要約: そこで我々は,SiamFlowを提案する。これはフローが潜在空間内のターゲットシーケンス埋め込みの分布に適合するように強制する。
具体的には、アライメント損失と一様損失を用いて、ターゲットシーケンスの埋め込みと薬物グラフの埋め込みを合意に導く。
実験により,提案手法は,分子グラフ生成に向けた潜在空間における有意な表現を定量的に学習することを示す。
- 参考スコア(独自算出の注目度): 37.937378787812264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating molecules with desired biological activities has attracted growing
attention in drug discovery. Previous molecular generation models are designed
as chemocentric methods that hardly consider the drug-target interaction,
limiting their practical applications. In this paper, we aim to generate
molecular drugs in a target-aware manner that bridges biological activity and
molecular design. To solve this problem, we compile a benchmark dataset from
several publicly available datasets and build baselines in a unified framework.
Building on the recent advantages of flow-based molecular generation models, we
propose SiamFlow, which forces the flow to fit the distribution of target
sequence embeddings in latent space. Specifically, we employ an alignment loss
and a uniform loss to bring target sequence embeddings and drug graph
embeddings into agreements while avoiding collapse. Furthermore, we formulate
the alignment into a one-to-many problem by learning spaces of target sequence
embeddings. Experiments quantitatively show that our proposed method learns
meaningful representations in the latent space toward the target-aware
molecular graph generation and provides an alternative approach to bridge
biology and chemistry in drug discovery.
- Abstract(参考訳): 望ましい生物学的活性を持つ分子の生成は、薬物発見において注目を集めている。
従来の分子生成モデルは、薬物と標的の相互作用をほとんど考慮しない化学中心的な方法として設計されており、その実用性は制限されている。
本稿では,生物活性と分子設計を橋渡しする標的に配慮した分子ドラッグの創製を目指す。
この問題を解決するため、いくつかの公開データセットからベンチマークデータセットをコンパイルし、統一フレームワークでベースラインを構築します。
流れに基づく分子生成モデルの最近の利点に基づいて, 潜在空間における対象配列埋め込みの分布に流れを適合させるsiamflowを提案する。
具体的には,アライメントロスと一様損失を用いて,目標配列埋め込みと薬物グラフ埋め込みを合意に導入し,崩壊を回避する。
さらに,対象シーケンス埋め込みの学習空間を学習することにより,アライメントを一対多の問題に定式化する。
実験により,提案手法は分子グラフ生成を目標とする潜在空間で有意義な表現を学習することを示し,薬物発見における生物学と化学の橋渡しに代替的なアプローチを提供する。
関連論文リスト
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
本稿では,デコーダのみのグラフトランスフォーマアーキテクチャであるGraphXFormについて述べる。
液液抽出のための2つの溶媒設計課題について評価し,4つの最先端分子設計技術より優れていることを示した。
論文 参考訳(メタデータ) (2024-11-03T19:45:15Z) - GFlowNet Pretraining with Inexpensive Rewards [2.924067540644439]
A-GFN(Atomic GFlowNets)は、個々の原子をビルディングブロックとして活用し、薬物のような化学空間をより包括的に探索する基礎的な生成モデルである。
オフラインな薬物様分子データセットを用いた教師なし事前学習手法を提案する。
我々は、目標条件付き微調整プロセスを実装し、A-GFNを適応させて特定の目標特性に最適化する手法をさらに強化する。
論文 参考訳(メタデータ) (2024-09-15T11:42:17Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - Navigating Chemical Space with Latent Flows [20.95884505685799]
本稿では,分子生成モデルによって学習された潜伏空間をフローを通して移動させることにより,化学空間を横断する新しいフレームワークであるChemFlowを提案する。
我々は,分子操作におけるChemFlowの有効性と,教師なしおよび教師なしの両方の分子発見条件下での単目的および多目的最適化タスクの有効性を検証した。
論文 参考訳(メタデータ) (2024-05-07T03:55:57Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
そこで本研究では,戦略的サンプリングを通じて原因・影響関係を識別する能動的学習手法を提案する。
この方法は、より大きな化学空間の最も多くの情報を符号化できるデータセットの最小サブセットを特定する。
その後、同定された因果関係を利用して体系的な介入を行い、モデルがこれまで遭遇していなかった化学空間における設計タスクを最適化する。
論文 参考訳(メタデータ) (2024-04-05T17:15:48Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - A biologically-inspired evaluation of molecular generative machine
learning [17.623886600638716]
分子生成モデル評価のためのバイオインスパイアされた新しいベンチマークを提案する。
本稿では, 創出出力評価のための相補的手法として, レクリエーション指標, 薬物-標的親和性予測, 分子ドッキングを提案する。
論文 参考訳(メタデータ) (2022-08-20T11:01:10Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Analysis of training and seed bias in small molecules generated with a
conditional graph-based variational autoencoder -- Insights for practical
AI-driven molecule generation [0.0]
活性条件付きグラフベース変分オートエンコーダ(VAE)の出力に及ぼすシードとトレーニングバイアスの影響を解析する。
グラフに基づく生成モデルは, 所望の条件付き活性と, 生成分子における好ましくない物理特性の創出に優れていた。
論文 参考訳(メタデータ) (2021-07-19T16:00:05Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
計算モデルや分子表現にまたがる包括的な機械学習ツール群であるMoleculeKitを開発した。
これらの表現に基づいて構築されたMoeculeKitには、ディープラーニングと、グラフとシーケンスデータのための従来の機械学習方法の両方が含まれている。
オンラインおよびオフラインの抗生物質発見と分子特性予測のタスクの結果から、MoneculeKitは以前の方法よりも一貫した改善を実現していることがわかる。
論文 参考訳(メタデータ) (2020-12-02T02:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。