論文の概要: GFlowNet Pretraining with Inexpensive Rewards
- arxiv url: http://arxiv.org/abs/2409.09702v1
- Date: Sun, 15 Sep 2024 11:42:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 19:38:21.004809
- Title: GFlowNet Pretraining with Inexpensive Rewards
- Title(参考訳): 強迫的逆流によるGFlowNet事前学習
- Authors: Mohit Pandey, Gopeshh Subbaraj, Emmanuel Bengio,
- Abstract要約: A-GFN(Atomic GFlowNets)は、個々の原子をビルディングブロックとして活用し、薬物のような化学空間をより包括的に探索する基礎的な生成モデルである。
オフラインな薬物様分子データセットを用いた教師なし事前学習手法を提案する。
我々は、目標条件付き微調整プロセスを実装し、A-GFNを適応させて特定の目標特性に最適化する手法をさらに強化する。
- 参考スコア(独自算出の注目度): 2.924067540644439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Flow Networks (GFlowNets), a class of generative models have recently emerged as a suitable framework for generating diverse and high-quality molecular structures by learning from unnormalized reward distributions. Previous works in this direction often restrict exploration by using predefined molecular fragments as building blocks, limiting the chemical space that can be accessed. In this work, we introduce Atomic GFlowNets (A-GFNs), a foundational generative model leveraging individual atoms as building blocks to explore drug-like chemical space more comprehensively. We propose an unsupervised pre-training approach using offline drug-like molecule datasets, which conditions A-GFNs on inexpensive yet informative molecular descriptors such as drug-likeliness, topological polar surface area, and synthetic accessibility scores. These properties serve as proxy rewards, guiding A-GFNs towards regions of chemical space that exhibit desirable pharmacological properties. We further our method by implementing a goal-conditioned fine-tuning process, which adapts A-GFNs to optimize for specific target properties. In this work, we pretrain A-GFN on the ZINC15 offline dataset and employ robust evaluation metrics to show the effectiveness of our approach when compared to other relevant baseline methods in drug design.
- Abstract(参考訳): 生成フローネットワーク(GFlowNets, Generative Flow Networks, GFlowNets)は、最近、非正規化報酬分布から学習することで、多種多様な高品質な分子構造を生成するのに適したフレームワークとして登場した。
この方向の以前の研究は、事前に定義された分子断片を建築ブロックとして使用することで探索を制限し、アクセス可能な化学空間を制限することが多かった。
本研究では、個々の原子をビルディングブロックとして活用し、薬物のような化学空間をより包括的に探索する基盤生成モデルであるAtomic GFlowNets(A-GFNs)を紹介する。
そこで本研究では, 薬物類似性, トポロジカル極面面積, 合成アクセシビリティスコアなど, 安価で情報性の高い分子ディスクリプタ上で, A-GFNを条件付けるオフライン薬物様分子データセットを用いた教師なし事前学習手法を提案する。
これらの性質は、A-GFNを好ましい薬理学的性質を示す化学空間の領域へと誘導するプロキシ報酬として機能する。
我々は、目標条件付き微調整プロセスを実装し、A-GFNを適応させて特定の目標特性に最適化する手法をさらに強化する。
本研究は、ZINC15オフラインデータセット上でA-GFNを事前訓練し、薬物設計における他の関連するベースライン手法と比較して、我々のアプローチの有効性を示す頑健な評価指標を用いた。
関連論文リスト
- Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3次元生成モデルは、構造ベースドラッグデザイン(SBDD)において大きな可能性を秘めている。
問題を分子生成と特性予測に分離する。
後者は相乗的に拡散サンプリング過程を導出し、誘導拡散を促進し、所望の性質を持つ有意義な分子を創出する。
この誘導分子生成過程をTAGMolと呼ぶ。
論文 参考訳(メタデータ) (2024-06-03T14:43:54Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - Molecular De Novo Design through Transformer-based Reinforcement
Learning [38.803770968809225]
分子デノボ設計のためのトランスフォーマーを用いた生成モデルを微調整する手法を提案する。
提案手法は, 種々の生物標的に対して活性を示すと予測された化合物の生成において, 優れた性能を示す。
本手法は, 足場ホッピング, 単一分子からのライブラリ拡張, 生物標的に対する高い活性の化合物の生成に有効である。
論文 参考訳(メタデータ) (2023-10-09T02:51:01Z) - Leveraging Side Information for Ligand Conformation Generation using
Diffusion-Based Approaches [12.71967232020327]
リガンド分子コンホメーション生成は、薬物発見において重要な課題である。
この問題を解決するためにディープラーニングモデルが開発されている。
これらのモデルはしばしば、本質的な側情報がないため、意味のある構造やランダム性を欠いたコンフォメーションを生成する。
論文 参考訳(メタデータ) (2023-08-02T09:56:47Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Target-aware Molecular Graph Generation [37.937378787812264]
そこで我々は,SiamFlowを提案する。これはフローが潜在空間内のターゲットシーケンス埋め込みの分布に適合するように強制する。
具体的には、アライメント損失と一様損失を用いて、ターゲットシーケンスの埋め込みと薬物グラフの埋め込みを合意に導く。
実験により,提案手法は,分子グラフ生成に向けた潜在空間における有意な表現を定量的に学習することを示す。
論文 参考訳(メタデータ) (2022-02-10T04:31:14Z) - Reinforced Molecular Optimization with Neighborhood-Controlled Grammars [63.84003497770347]
分子最適化のためのグラフ畳み込みポリシネットワークであるMNCE-RLを提案する。
我々は、元の近傍制御された埋め込み文法を拡張して、分子グラフ生成に適用する。
提案手法は, 分子最適化タスクの多種多様さにおいて, 最先端性能を実現する。
論文 参考訳(メタデータ) (2020-11-14T05:42:15Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。