Collaborative analysis of genomic data: vision and challenges
- URL: http://arxiv.org/abs/2202.04841v1
- Date: Thu, 10 Feb 2022 05:16:11 GMT
- Title: Collaborative analysis of genomic data: vision and challenges
- Authors: Sara Jafarbeiki, Raj Gaire, Amin Sakzad, Shabnam Kasra Kermanshahi,
Ron Steinfeld
- Abstract summary: Cost of DNA sequencing has resulted in a surge of genetic data being utilised to improve scientific research, clinical procedures, and healthcare delivery in recent years.
Since the human genome can uniquely identify an individual, this characteristic also raises security and privacy concerns.
In this paper, we explore regulations and ethical guidelines and propose our visions of secure/private genomic data storage/processing/sharing platforms.
- Score: 9.608060862723862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The cost of DNA sequencing has resulted in a surge of genetic data being
utilised to improve scientific research, clinical procedures, and healthcare
delivery in recent years. Since the human genome can uniquely identify an
individual, this characteristic also raises security and privacy concerns. In
order to balance the risks and benefits, governance mechanisms including
regulatory and ethical controls have been established, which are prone to human
errors and create hindrance for collaboration. Over the past decade,
technological methods are also catching up that can support critical
discoveries responsibly. In this paper, we explore regulations and ethical
guidelines and propose our visions of secure/private genomic data
storage/processing/sharing platforms. Then, we present some available
techniques and a conceptual system model that can support our visions. Finally,
we highlight the open issues that need further investigation.
Related papers
- The Gradient of Health Data Privacy [15.417809900388262]
This paper introduces a novel "privacy gradient" approach to health data governance.
Our multidimensional concept considers factors such as data sensitivity, stakeholder relationships, purpose of use, and temporal aspects.
We demonstrate how this approach can address critical privacy challenges in diverse healthcare settings worldwide.
arXiv Detail & Related papers (2024-10-01T17:35:18Z) - Privacy-Preserving Collaborative Genomic Research: A Real-Life Deployment and Vision [2.7968600664591983]
This paper presents a privacy-preserving framework for genomic research, developed in collaboration with Lynx.MD.
The framework addresses critical cybersecurity and privacy challenges, enabling the privacy-preserving sharing and analysis of genomic data.
Implementing the framework within Lynx.MD involves encoding genomic data into binary formats and applying noise through controlled perturbation techniques.
arXiv Detail & Related papers (2024-07-12T05:43:13Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Biometric Technologies and the Law: Developing a Taxonomy for Guiding
Policymakers [0.0]
This study proposes a taxonomy of biometric technologies that can aid in their effective deployment and supervision.
The resulting taxonomy can enhance the understanding of biometric technologies and facilitate the development of regulation that prioritises privacy and personal data protection.
arXiv Detail & Related papers (2023-10-27T10:23:46Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - A Survey on Computer Vision based Human Analysis in the COVID-19 Era [58.79053747159797]
The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals.
Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications.
These developments triggered the need for novel and improved computer vision techniques capable of (i) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and (ii) facilitating normal operation of existing vision-based services, such as biometric authentication
arXiv Detail & Related papers (2022-11-07T17:20:39Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Machine Learning in Precision Medicine to Preserve Privacy via
Encryption [2.099922236065961]
We propose a generic machine learning with encryption (MLE) framework, which we used to build an ML model that predicts cancer.
Our framework's prediction accuracy is slightly higher than that of the most recent studies conducted on the same dataset.
We provide an open-source repository that contains the design and implementation of the framework, all the ML experiments and code, and the final predictive model deployed to a free cloud service.
arXiv Detail & Related papers (2021-02-05T20:22:15Z) - Privacy-preserving Artificial Intelligence Techniques in Biomedicine [3.908261721108553]
Training an AI model on sensitive data raises concerns about the privacy of individual participants.
This paper provides a structured overview of advances in privacy-preserving AI techniques in biomedicine.
It places the most important state-of-the-art approaches within a unified taxonomy and discusses their strengths, limitations, and open problems.
arXiv Detail & Related papers (2020-07-22T18:35:55Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.