Memory-based gaze prediction in deep imitation learning for robot
manipulation
- URL: http://arxiv.org/abs/2202.04877v1
- Date: Thu, 10 Feb 2022 07:30:08 GMT
- Title: Memory-based gaze prediction in deep imitation learning for robot
manipulation
- Authors: Heecheol Kim, Yoshiyuki Ohmura, Yasuo Kuniyoshi
- Abstract summary: The proposed algorithm uses a Transformer-based self-attention architecture for the gaze estimation based on sequential data to implement memory.
The proposed method was evaluated with a real robot multi-object manipulation task that requires memory of the previous states.
- Score: 2.857551605623957
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep imitation learning is a promising approach that does not require
hard-coded control rules in autonomous robot manipulation. The current
applications of deep imitation learning to robot manipulation have been limited
to reactive control based on the states at the current time step. However,
future robots will also be required to solve tasks utilizing their memory
obtained by experience in complicated environments (e.g., when the robot is
asked to find a previously used object on a shelf). In such a situation, simple
deep imitation learning may fail because of distractions caused by complicated
environments. We propose that gaze prediction from sequential visual input
enables the robot to perform a manipulation task that requires memory. The
proposed algorithm uses a Transformer-based self-attention architecture for the
gaze estimation based on sequential data to implement memory. The proposed
method was evaluated with a real robot multi-object manipulation task that
requires memory of the previous states.
Related papers
- Exploring Visual Pre-training for Robot Manipulation: Datasets, Models
and Methods [14.780597545674157]
We investigate the effects of visual pre-training strategies on robot manipulation tasks from three fundamental perspectives.
We propose a visual pre-training scheme for robot manipulation termed Vi-PRoM, which combines self-supervised learning and supervised learning.
arXiv Detail & Related papers (2023-08-07T14:24:52Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - Instruction-driven history-aware policies for robotic manipulations [82.25511767738224]
We propose a unified transformer-based approach that takes into account multiple inputs.
In particular, our transformer architecture integrates (i) natural language instructions and (ii) multi-view scene observations.
We evaluate our method on the challenging RLBench benchmark and on a real-world robot.
arXiv Detail & Related papers (2022-09-11T16:28:25Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Transformer-based deep imitation learning for dual-arm robot
manipulation [5.3022775496405865]
In a dual-arm manipulation setup, the increased number of state dimensions caused by the additional robot manipulators causes distractions.
We address this issue using a self-attention mechanism that computes dependencies between elements in a sequential input and focuses on important elements.
A Transformer, a variant of self-attention architecture, is applied to deep imitation learning to solve dual-arm manipulation tasks in the real world.
arXiv Detail & Related papers (2021-08-01T07:42:39Z) - Low Dimensional State Representation Learning with Reward-shaped Priors [7.211095654886105]
We propose a method that aims at learning a mapping from the observations into a lower-dimensional state space.
This mapping is learned with unsupervised learning using loss functions shaped to incorporate prior knowledge of the environment and the task.
We test the method on several mobile robot navigation tasks in a simulation environment and also on a real robot.
arXiv Detail & Related papers (2020-07-29T13:00:39Z) - Thinking While Moving: Deep Reinforcement Learning with Concurrent
Control [122.49572467292293]
We study reinforcement learning in settings where sampling an action from the policy must be done concurrently with the time evolution of the controlled system.
Much like a person or an animal, the robot must think and move at the same time, deciding on its next action before the previous one has completed.
arXiv Detail & Related papers (2020-04-13T17:49:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.