Quantum correlations and ergotropy
- URL: http://arxiv.org/abs/2202.05050v3
- Date: Sat, 30 Apr 2022 18:38:42 GMT
- Title: Quantum correlations and ergotropy
- Authors: Gianluca Francica
- Abstract summary: In closed quantum systems, the maximum cyclic work extractable is equal to the ergotropy.
We identify and investigate the contributions to the ergotropy coming from different kinds of initial correlations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the role of classical and quantum correlations in work
extraction is a problem of fundamental importance in thermodynamics. We
approach this problem by considering that, in closed quantum systems, the
maximum cyclic work extractable is equal to the ergotropy. Thus, we aim to
identify and investigate the contributions to the ergotropy coming from
different kinds of initial correlations (total, classical, discord and
entanglement correlations). By doing so, we have introduced and studied
quantifiers of correlations which are based on ergotropy. In particular, our
results suggest that only discord correlations always give a positive
contribution to work extraction, while total, classical and entanglement
correlations can reduce the work extraction.
Related papers
- Spectroscopy and complex-time correlations using minimally entangled typical thermal states [39.58317527488534]
We introduce a practical approach to computing such correlators using minimally entangled typical thermal states.
We show that these numerical techniques capture the finite-temperature dynamics of the Shastry-Sutherland model.
arXiv Detail & Related papers (2024-05-28T18:00:06Z) - Demonstration of energy extraction gain from non-classical correlations [62.615368802619116]
We show that entanglement governs the amount of extractable energy in a controllable setting.
By quantifying both the concurrence of the two-qubit resource state and the energy extraction gain from applying the feedback policy, we corroborate the connection between information and energy.
arXiv Detail & Related papers (2024-04-23T08:44:07Z) - Role of quantum correlations in daemonic expected utility [0.0]
We study a bipartite quantum system and examine the role of quantum correlations in a daemonic work extraction performed by certain local operations and classical communication.
Specifically, we demonstrate and explain how, depending on the so-called absolute risk aversion, a non-neutral risk agent, influenced by fluctuations, views quantum correlations differently from a neutral risk agent who is affected solely by the average work.
arXiv Detail & Related papers (2024-02-24T21:50:49Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Work statistics, quantum signatures and enhanced work extraction in
quadratic fermionic models [62.997667081978825]
In quadratic fermionic models we determine a quantum correction to the work statistics after a sudden and a time-dependent driving.
Such a correction lies in the non-commutativity of the initial quantum state and the time-dependent Hamiltonian.
Thanks to the latter, one can assess the onset of non-classical signatures in the KDQ distribution of work.
arXiv Detail & Related papers (2023-02-27T13:42:40Z) - Selective weak measurement reveals super ergotropy [0.0]
ergotropy was previously introduced as the maximum extractable work from a quantum state.
In this work, we investigate the ergotropy in the presence of quantum correlation via weak measurement.
arXiv Detail & Related papers (2022-08-01T06:40:10Z) - Extracting work from correlated many-body quantum systems [2.0305676256390934]
The presence of correlations in the input state of a non-interacting many-body quantum system can lead to an increase in the amount of work we can extract from it under global unitary processes.
We observe that in the thermodynamic limit of large number of sites, complete work extraction can be attained for relatively small correlation strength.
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Ergotropy from quantum and classical correlations [0.0]
We show that the ergotropy can be expressed as a function of the quantum mutual information.
We analyze bipartite quantum systems with locally thermal states.
arXiv Detail & Related papers (2021-02-26T17:23:58Z) - Quantum Coherence and Ergotropy [0.0]
Constraints on work extraction are fundamental to our understanding of the thermodynamics of both classical and quantum systems.
In the quantum setting, finite-time control operations generate coherence in the instantaneous energy eigenbasis of the dynamical system.
We isolate and study the quantum coherent component to the work yield in such protocols.
arXiv Detail & Related papers (2020-06-09T17:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.