Quantum Coherence and Ergotropy
- URL: http://arxiv.org/abs/2006.05424v2
- Date: Tue, 3 Nov 2020 15:08:57 GMT
- Title: Quantum Coherence and Ergotropy
- Authors: Gianluca Francica, Felix C. Binder, Giacomo Guarnieri, Mark T.
Mitchison, John Goold, and Francesco Plastina
- Abstract summary: Constraints on work extraction are fundamental to our understanding of the thermodynamics of both classical and quantum systems.
In the quantum setting, finite-time control operations generate coherence in the instantaneous energy eigenbasis of the dynamical system.
We isolate and study the quantum coherent component to the work yield in such protocols.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constraints on work extraction are fundamental to our operational
understanding of the thermodynamics of both classical and quantum systems. In
the quantum setting, finite-time control operations typically generate
coherence in the instantaneous energy eigenbasis of the dynamical system.
Thermodynamic cycles can, in principle, be designed to extract work from this
non-equilibrium resource. Here, we isolate and study the quantum coherent
component to the work yield in such protocols. Specifically, we identify a
coherent contribution to the ergotropy (the maximum amount of unitarily
extractable work via cyclical variation of Hamiltonian parameters). We show
this by dividing the optimal transformation into an incoherent operation and a
coherence extraction cycle. We obtain bounds for both the coherent and
incoherent parts of the extractable work and discuss their saturation in
specific settings. Our results are illustrated with several examples, including
finite-dimensional systems and bosonic Gaussian states that describe recent
experiments on quantum heat engines with a quantized load.
Related papers
- Experimental simulation of daemonic work extraction in open quantum batteries on a digital quantum computer [0.0]
We show how to implement the corresponding dynamics as a quantum circuit, including the final conditional feedback unitary evolution.
We experimentally simulate the work extraction protocol showing how the obtained experimental values of the daemonic extracted work are close to their theoretical upper bound quantified by the so-called daemonic ergotropy.
arXiv Detail & Related papers (2024-10-21T22:56:24Z) - Extracting work from coherence in a two-mode Bose-Einstein condensate [0.0]
We show how work can be extracted from number-state coherence in a two-mode Bose-Einstein condensate.
We characterise quantum (from coherence) and classical (remaining) contributions to work output.
arXiv Detail & Related papers (2024-06-18T09:00:46Z) - Quantum non-Markovianity, quantum coherence and extractable work in a
general quantum process [0.0]
Key concept in quantum thermodynamics is extractable work, which specifies the maximum amount of work that can be extracted from a quantum system.
Different quantities are used to measure extractable work, the most prevalent of which are ergotropy and the difference between the non-equilibrium and equilibrium quantum free energy.
We investigate the evolution of extractable work when an open quantum system goes through a general quantum process described by a completely-positive and trace-preserving dynamical map.
arXiv Detail & Related papers (2023-09-10T11:05:35Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Dynamical Control of Quantum Heat Engines Using Exceptional Points [0.09679987540134938]
A quantum thermal machine is an open quantum system coupled to hot and cold thermal baths.
A hallmark of non-Hermiticity is the existence of exceptional points where the eigenvalues of a non-Hermitian Hamiltonian or an Liouvillian superoperator and their associated eigenvectors coalesce.
Here, we report the experimental realisation of a single-ion heat engine and demonstrate the effect of the Liouvillian exceptional points on the dynamics and the performance of a quantum heat engine.
arXiv Detail & Related papers (2022-10-24T06:49:05Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Ergotropy from quantum and classical correlations [0.0]
We show that the ergotropy can be expressed as a function of the quantum mutual information.
We analyze bipartite quantum systems with locally thermal states.
arXiv Detail & Related papers (2021-02-26T17:23:58Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.