Deep Learning for Computational Cytology: A Survey
- URL: http://arxiv.org/abs/2202.05126v1
- Date: Thu, 10 Feb 2022 16:22:10 GMT
- Title: Deep Learning for Computational Cytology: A Survey
- Authors: Hao Jiang, Yanning Zhou, Yi Lin, Ronald CK Chan, Jiang Liu, Hao Chen
- Abstract summary: We introduce various deep learning methods, including fully supervised, weakly supervised, unsupervised, and transfer learning.
Then, we systematically summarize the public datasets, evaluation metrics, versatile cyto image analysis applications including classification, detection, segmentation, and other related tasks.
- Score: 12.08083533402352
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computational cytology is a critical, rapid-developing, yet challenging topic
in the field of medical image computing which analyzes the digitized cytology
image by computer-aided technologies for cancer screening. Recently, an
increasing number of deep learning (DL) algorithms have made significant
progress in medical image analysis, leading to the boosting publications of
cytological studies. To investigate the advanced methods and comprehensive
applications, we survey more than 120 publications of DL-based cytology image
analysis in this article. We first introduce various deep learning methods,
including fully supervised, weakly supervised, unsupervised, and transfer
learning. Then, we systematically summarize the public datasets, evaluation
metrics, versatile cytology image analysis applications including
classification, detection, segmentation, and other related tasks. Finally, we
discuss current challenges and potential research directions of computational
cytology.
Related papers
- Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions [0.0]
Recent breakthroughs in deep learning, a subset of artificial intelligence, have markedly revolutionized the analysis of medical pictures.
CNNs have demonstrated remarkable proficiency in autonomously learning features from multidimensional medical pictures.
These models have been utilized across multiple medical disciplines, including pathology, radiology, ophthalmology, and cardiology.
arXiv Detail & Related papers (2024-10-18T02:57:14Z) - Biomedical Image Segmentation: A Systematic Literature Review of Deep Learning Based Object Detection Methods [1.0043008463279772]
Deep learning-based object detection methods are commonly used for biomedical image segmentation.
Existing surveys often lack a standardized approach or focus on broader segmentation techniques.
We critically analyzed these methods, identified the key challenges, and discussed the future directions.
This SLR aims to provide the research community with a quick yet deeper understanding of these segmentation models.
arXiv Detail & Related papers (2024-08-06T18:38:55Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Exploring the Role of Convolutional Neural Networks (CNN) in Dental
Radiography Segmentation: A Comprehensive Systematic Literature Review [1.342834401139078]
This work demonstrates how Convolutional Neural Networks (CNNs) can be employed to analyze images, serving as effective tools for detecting dental pathologies.
CNNs utilized for segmenting and categorizing teeth exhibited their highest level of performance overall.
arXiv Detail & Related papers (2024-01-17T13:00:57Z) - A Systematic Review of Few-Shot Learning in Medical Imaging [1.049712834719005]
Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis.
This systematic review gives a comprehensive overview of few-shot learning in medical imaging.
arXiv Detail & Related papers (2023-09-20T16:10:53Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
We reviewed and summarized more than 200 recently published papers to provide a comprehensive overview of applying deep learning methods in various medical image analysis tasks.
Especially, we emphasize the latest progress and contributions of state-of-the-art unsupervised and semi-supervised deep learning in medical images.
arXiv Detail & Related papers (2021-05-27T18:05:12Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
Histopathological images (HIs) are the gold standard for evaluating some types of tumors for cancer diagnosis.
One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems.
arXiv Detail & Related papers (2021-02-07T19:12:32Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.