Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2410.14131v2
- Date: Mon, 04 Nov 2024 21:47:36 GMT
- Title: Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions
- Authors: Aimina Ali Eli, Abida Ali,
- Abstract summary: Recent breakthroughs in deep learning, a subset of artificial intelligence, have markedly revolutionized the analysis of medical pictures.
CNNs have demonstrated remarkable proficiency in autonomously learning features from multidimensional medical pictures.
These models have been utilized across multiple medical disciplines, including pathology, radiology, ophthalmology, and cardiology.
- Score: 0.0
- License:
- Abstract: Medical image analysis has emerged as an essential element of contemporary healthcare, facilitating physicians in achieving expedited and precise diagnosis. Recent breakthroughs in deep learning, a subset of artificial intelligence, have markedly revolutionized the analysis of medical pictures, improving the accuracy and efficiency of clinical procedures. Deep learning algorithms, especially convolutional neural networks (CNNs), have demonstrated remarkable proficiency in autonomously learning features from multidimensional medical pictures, including MRI, CT, and X-ray scans, without the necessity for manual feature extraction. These models have been utilized across multiple medical disciplines, including pathology, radiology, ophthalmology, and cardiology, where they aid in illness detection, classification, and segmentation tasks......
Related papers
- On Validation of Search & Retrieval of Tissue Images in Digital Pathology [0.0]
Medical images play a crucial role in modern healthcare by providing vital information for diagnosis, treatment planning, and disease monitoring.
The technological advancements have exponentially increased the volume and complexity of medical images.
Content-Based Image Retrieval (CBIR) systems address this need by searching and retrieving images based on visual content.
arXiv Detail & Related papers (2024-08-02T20:55:45Z) - Empowering Medical Imaging with Artificial Intelligence: A Review of
Machine Learning Approaches for the Detection, and Segmentation of COVID-19
Using Radiographic and Tomographic Images [2.232567376976564]
Since 2019, the global dissemination of the Coronavirus and its novel strains has resulted in a surge of new infections.
The use of X-ray and computed tomography (CT) imaging techniques is critical in diagnosing and managing COVID-19.
This paper focuses on the methodological approach of using machine learning (ML) to enhance medical imaging for COVID-19 diagnosis.
arXiv Detail & Related papers (2024-01-13T09:17:39Z) - Object Detection for Automated Coronary Artery Using Deep Learning [0.0]
In our paper, we utilize the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis.
This model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process.
arXiv Detail & Related papers (2023-12-19T13:14:52Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - Case Studies on X-Ray Imaging, MRI and Nuclear Imaging [0.0]
We will focus on how AI-based approaches, particularly the use of Convolutional Neural Networks (CNN), can assist in disease detection through medical imaging technology.
CNN is a commonly used approach for image analysis due to its ability to extract features from raw input images.
arXiv Detail & Related papers (2023-06-03T09:05:35Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
We reviewed and summarized more than 200 recently published papers to provide a comprehensive overview of applying deep learning methods in various medical image analysis tasks.
Especially, we emphasize the latest progress and contributions of state-of-the-art unsupervised and semi-supervised deep learning in medical images.
arXiv Detail & Related papers (2021-05-27T18:05:12Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
Histopathological images (HIs) are the gold standard for evaluating some types of tumors for cancer diagnosis.
One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems.
arXiv Detail & Related papers (2021-02-07T19:12:32Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.