Axial momentum and quantization of the Majorana field
- URL: http://arxiv.org/abs/2202.05133v2
- Date: Tue, 8 Mar 2022 12:19:57 GMT
- Title: Axial momentum and quantization of the Majorana field
- Authors: H. Arodz
- Abstract summary: New approach to quantization of the relativistic Majorana field is presented.
It is based on expansion of the field into eigenfunctions of the axial momentum.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: New approach to quantization of the relativistic Majorana field is presented.
It is based on expansion of the field into eigenfunctions of the axial momentum
-- a novel observable introduced recently. Relativistic invariance is used as
the main guiding principle instead of canonical formalism. Hidden structure of
the quantized Majorana field in the form of real Clifford algebra of Hermitian
fermionic operators is unveiled. Generators of the Poincar\'e transformations
in the Fock space are found as solutions of certain operator equations, without
invoking the principle of correspondence with classical conserved quantities.
Also operators of parity $\hat{\mbox{P}}$ and time reversal $\hat{\mbox{T}}$
are constructed.
Related papers
- Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Spacetime quantum and classical mechanics with dynamical foliation [0.0]
We extend the time choice of the Legendre transform to a dynamical variable.
A canonical-like quantization of the formalism is then presented in which the fields satisfy spacetime commutation relations.
The problem of establishing a correspondence between the new noncausal framework and conventional QM is solved through a generalization of spacelike correlators to spacetime.
arXiv Detail & Related papers (2023-11-11T05:51:21Z) - Poincaré symmetries and representations in pseudo-Hermitian quantum field theory [0.0]
This paper explores quantum field theories with pseudo-Hermitian Hamiltonians.
PT-symmetric Hamiltonians serve as a special case.
We extend the Poincar'e algebra to include non-Hermitian generators.
arXiv Detail & Related papers (2023-07-31T16:17:20Z) - Quantization of a New Canonical, Covariant, and Symplectic Hamiltonian
Density [0.0]
We generalize classical mechanics to poly-symplectic fields and recover De Donder-Weyl theory.
We provide commutation relations for the classical and quantum fields that generalize the Koopman-von Neumann and Heisenberg algebras.
arXiv Detail & Related papers (2023-05-05T01:30:45Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Particle on the sphere: group-theoretic quantization in the presence of
a magnetic monopole [0.0]
We consider the problem of quantizing a particle on a 2-sphere.
We construct the Hilbert space directly from the symmetry algebra.
We show how the Casimir invariants of the algebra determine the bundle topology.
arXiv Detail & Related papers (2020-11-10T04:42:08Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - Group Theoretical Approach to Pseudo-Hermitian Quantum Mechanics with
Lorentz Covariance and $c \rightarrow \infty $ Limit [0.0]
The basic representation is identified as a coherent state representation, essentially an irreducible component of the regular representation.
The key feature of the formulation is that it is not unitary but pseudo-unitary, exactly in the same sense as the Minkowski spacetime representation.
Explicit wavefunction description is given without any restriction of the variable domains, yet with a finite integral inner product.
arXiv Detail & Related papers (2020-09-12T23:48:52Z) - Sub-bosonic (deformed) ladder operators [62.997667081978825]
We present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness.
This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states.
In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.
arXiv Detail & Related papers (2020-09-10T20:53:58Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.