Quantization of a New Canonical, Covariant, and Symplectic Hamiltonian
Density
- URL: http://arxiv.org/abs/2305.08864v2
- Date: Thu, 7 Sep 2023 21:48:27 GMT
- Title: Quantization of a New Canonical, Covariant, and Symplectic Hamiltonian
Density
- Authors: David Chester, Xerxes D. Arsiwalla, Louis Kauffman, Michel Planat, and
Klee Irwin
- Abstract summary: We generalize classical mechanics to poly-symplectic fields and recover De Donder-Weyl theory.
We provide commutation relations for the classical and quantum fields that generalize the Koopman-von Neumann and Heisenberg algebras.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We generalize Koopman-von Neumann classical mechanics to poly-symplectic
fields and recover De Donder-Weyl theory. Comparing with Dirac's Hamiltonian
density inspires a new Hamiltonian formulation with a canonical momentum field
that is Lorentz covariant with symplectic geometry. We provide commutation
relations for the classical and quantum fields that generalize the Koopman-von
Neumann and Heisenberg algebras. The classical algebra requires four fields
that generalize space-time, energy-momentum, frequency-wavenumber, and the
Fourier conjugate of energy-momentum. We clarify how 1st and 2nd quantization
can be found by simply mapping between operators in classical and quantum
commutator algebras.
Related papers
- Quantum Hamilton-Jacobi Theory, Spectral Path Integrals and Exact-WKB [0.0]
Hamilton-Jacobi theory is a powerful formalism, but its utility is not explored in quantum theory beyond the correspondence principle.
We propose a new way to perform path integrals in quantum mechanics by using a quantum version of Hamilton-Jacobi theory.
arXiv Detail & Related papers (2024-06-12T02:50:43Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Groupoid and algebra of the infinite quantum spin chain [0.0]
We show how these algebras naturally arise in the Schwinger description of the quantum mechanics of an infinite spin chain.
In particular, we use the machinery of Dirac-Feynman-Schwinger states developed in recent works to introduce a dynamics based on the modular theory by Tomita-Takesaki.
arXiv Detail & Related papers (2023-02-02T12:24:23Z) - Solving quantum dynamics with a Lie algebra decoupling method [0.0]
We present a pedagogical introduction to solving the dynamics of quantum systems by the use of a Lie algebra decoupling theorem.
As background, we include an overview of Lie groups and Lie algebras aimed at a general physicist audience.
We prove the theorem and apply it to three well-known examples of linear and quadratic Hamiltonian that frequently appear in quantum optics and related fields.
arXiv Detail & Related papers (2022-10-21T11:44:24Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Axial momentum and quantization of the Majorana field [0.0]
New approach to quantization of the relativistic Majorana field is presented.
It is based on expansion of the field into eigenfunctions of the axial momentum.
arXiv Detail & Related papers (2022-02-10T16:38:38Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain [21.24186888129542]
We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
arXiv Detail & Related papers (2020-10-14T16:46:11Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Koopman-von Neumann Approach to Quantum Simulation of Nonlinear
Classical Dynamics [0.0]
Quantum computers can be used to simulate nonlinear non-Hamiltonian classical dynamics on phase space.
Koopman-von Neumann formulation implies that the conservation of the probability distribution function on phase space can be recast as an equivalent Schr"odinger equation on Hilbert space.
Quantum simulation of classical dynamics is exponentially more efficient than a deterministic Eulerian discretization of the Liouville equation.
arXiv Detail & Related papers (2020-03-22T19:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.