論文の概要: Group-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2202.05135v5
- Date: Sat, 30 Sep 2023 20:32:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-03 10:55:01.995698
- Title: Group-Agent Reinforcement Learning
- Title(参考訳): グループエージェント強化学習
- Authors: Kaiyue Wu, Xiao-Jun Zeng
- Abstract要約: 複数の地理的に分散したエージェントがそれぞれのRLタスクを協調的に実行すれば、各エージェントの強化学習プロセスに大きく貢献できる。
グループエージェント強化学習(GARL)のための分散RLフレームワークDDAL(Decentralized Distributed Asynchronous Learning)を提案する。
- 参考スコア(独自算出の注目度): 12.915860504511523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It can largely benefit the reinforcement learning (RL) process of each agent
if multiple geographically distributed agents perform their separate RL tasks
cooperatively. Different from multi-agent reinforcement learning (MARL) where
multiple agents are in a common environment and should learn to cooperate or
compete with each other, in this case each agent has its separate environment
and only communicates with others to share knowledge without any cooperative or
competitive behaviour as a learning outcome. In fact, this scenario exists
widely in real life whose concept can be utilised in many applications, but is
not well understood yet and not well formulated. As the first effort, we
propose group-agent system for RL as a formulation of this scenario and the
third type of RL system with respect to single-agent and multi-agent systems.
We then propose a distributed RL framework called DDAL (Decentralised
Distributed Asynchronous Learning) designed for group-agent reinforcement
learning (GARL). We show through experiments that DDAL achieved desirable
performance with very stable training and has good scalability.
- Abstract(参考訳): 複数の地理的に分散したエージェントがそれぞれのRLタスクを協調的に実行する場合、各エージェントの強化学習(RL)プロセスに大きく貢献する。
複数のエージェントが共通の環境にあり、互いに協力や競争を学ばなければならないマルチエージェント強化学習(marl)とは異なり、この場合、各エージェントは別々の環境を持ち、学習結果として協力的あるいは競争的な振る舞いを伴わずに知識を共有するために他人とのみコミュニケーションをとる。
実際、このシナリオは多くのアプリケーションで利用できるが、十分に理解されておらず、十分に定式化されていない実生活に広く存在している。
第1の取り組みとして,このシナリオの定式化と,単一エージェントおよびマルチエージェントシステムに対する第3タイプのRLシステムについて,グループエージェントシステムを提案する。
次に,グループエージェント強化学習(GARL)のための分散RLフレームワークDDAL(Decentralized Distributed Asynchronous Learning)を提案する。
DDALは非常に安定したトレーニングで望ましいパフォーマンスを実現し、優れたスケーラビリティを実現した実験を通して示す。
関連論文リスト
- On the Linear Speedup of Personalized Federated Reinforcement Learning with Shared Representations [15.549340968605234]
フェデレート強化学習(FedRL)は、エージェントと環境相互作用の間に収集された局所的な軌跡を共有することなく、複数のエージェントが協調的にポリシーを学ぶことを可能にする。
異種環境におけるエージェント間の共通構造を生かし, 共生型FedRLフレームワーク(PFedRL)を導入する。
論文 参考訳(メタデータ) (2024-11-22T15:42:43Z) - Learning Emergence of Interaction Patterns across Independent RL Agents in Multi-Agent Environments [3.0284592792243794]
ボトムアップネットワーク(BUN)は、マルチエージェントの集合を統一エンティティとして扱う。
協調ナビゲーションやトラヒックコントロールなどのタスクを含む,さまざまな協調型マルチエージェントシナリオに対する実証的な評価は,BUNが計算コストを大幅に削減したベースライン手法よりも優れていることを一貫して証明している。
論文 参考訳(メタデータ) (2024-10-03T14:25:02Z) - Selectively Sharing Experiences Improves Multi-Agent Reinforcement Learning [9.25057318925143]
エージェントは他のエージェントと、トレーニング中に観察される遷移の限られた数で共有する、新しいマルチエージェントRLアプローチを提案する。
提案手法は,ベースラインの非共有型分散トレーニングと最先端のマルチエージェントRLアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2023-11-01T21:35:32Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
協調型マルチエージェント強化学習(MARL)は,エージェント数で指数関数的に大きい状態空間と動作空間により,スケーラビリティの問題に直面する。
本稿では,学習分散実行パラダイムに局所報酬を組み込んだ,新しい価値に基づくマルチエージェントアルゴリズム LOMAQ を提案する。
論文 参考訳(メタデータ) (2021-09-22T10:08:15Z) - AoI-Aware Resource Allocation for Platoon-Based C-V2X Networks via
Multi-Agent Multi-Task Reinforcement Learning [22.890835786710316]
本稿は,小隊の無線リソース管理を意識した情報年齢(AoI)の問題について検討する。
複数の自律型プラトンは、C-V2X通信技術を利用して、協力的認識メッセージ(CAM)をフォロワーに広める。
我々は,マルチエージェント強化学習(marl)に基づく分散リソース割当フレームワークを活用し,各小隊リーダ(pl)がエージェントとして行動し,環境と相互作用して最適方針を学ぶ。
論文 参考訳(メタデータ) (2021-05-10T08:39:56Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Distributed Reinforcement Learning for Cooperative Multi-Robot Object
Manipulation [53.262360083572005]
強化学習(RL)を用いた協調型マルチロボットオブジェクト操作タスクの検討
分散近似RL(DA-RL)とゲーム理論RL(GT-RL)の2つの分散マルチエージェントRLアプローチを提案する。
本稿では, DA-RL と GT-RL を多エージェントシステムに適用し, 大規模システムへの拡張が期待される。
論文 参考訳(メタデータ) (2020-03-21T00:43:54Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
マルチエージェント逆逆強化学習 (MA-AIRL) は, 単エージェントAIRLをマルチエージェント問題に適用する最近の手法である。
本稿では,従来の手法よりもサンプル効率が高く,スケーラブルなマルチエージェント逆RLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-24T20:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。