Decoding Drug Discovery: Exploring A-to-Z In silico Methods for Beginners
- URL: http://arxiv.org/abs/2412.11137v1
- Date: Sun, 15 Dec 2024 10:02:38 GMT
- Title: Decoding Drug Discovery: Exploring A-to-Z In silico Methods for Beginners
- Authors: Hezha O. Rasul, Dlzar D. Ghafour, Bakhtyar K. Aziz, Bryar A. Hassan, Tarik A. Rashid, Arif Kivrak,
- Abstract summary: The main goal of this work is to review in silico methods used in the drug development process.
This article thoroughly discusses A-to-Z in silico techniques, which are essential for identifying the targets of bioactive compounds.
- Score: 4.08908337437878
- License:
- Abstract: The drug development process is a critical challenge in the pharmaceutical industry due to its time-consuming nature and the need to discover new drug potentials to address various ailments. The initial step in drug development, drug target identification, often consumes considerable time. While valid, traditional methods such as in vivo and in vitro approaches are limited in their ability to analyze vast amounts of data efficiently, leading to wasteful outcomes. To expedite and streamline drug development, an increasing reliance on computer-aided drug design (CADD) approaches has merged. These sophisticated in silico methods offer a promising avenue for efficiently identifying viable drug candidates, thus providing pharmaceutical firms with significant opportunities to uncover new prospective drug targets. The main goal of this work is to review in silico methods used in the drug development process with a focus on identifying therapeutic targets linked to specific diseases at the genetic or protein level. This article thoroughly discusses A-to-Z in silico techniques, which are essential for identifying the targets of bioactive compounds and their potential therapeutic effects. This review intends to improve drug discovery processes by illuminating the state of these cutting-edge approaches, thereby maximizing the effectiveness and duration of clinical trials for novel drug target investigation.
Related papers
- Small Molecule Drug Discovery Through Deep Learning:Progress, Challenges, and Opportunities [34.72068278499029]
With the rapid development of deep learning (DL) techniques, DL-based small molecule drug discovery methods have achieved excellent performance.
This paper systematically summarize and generalize the recent key tasks and representative techniques in DL-based small molecule drug discovery.
arXiv Detail & Related papers (2025-02-13T05:24:52Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
We propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration.
Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb) to systematically extract DTIs.
By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates.
arXiv Detail & Related papers (2024-08-23T21:24:59Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Zero-shot Learning of Drug Response Prediction for Preclinical Drug
Screening [38.94493676651818]
We propose a zero-shot learning solution for the.
task in preclinical drug screening.
Specifically, we propose a Multi-branch Multi-Source Domain Adaptation Test Enhancement Plug-in, called MSDA.
arXiv Detail & Related papers (2023-10-05T05:55:41Z) - NeuroCADR: Drug Repurposing to Reveal Novel Anti-Epileptic Drug
Candidates Through an Integrated Computational Approach [0.0]
Drug repurposing is an emerging approach for drug discovery involving the reassignment of existing drugs for novel purposes.
A proposed algorithm is NeuroCADR, a novel system for drug repurposing via a multi-pronged approach consisting of k-nearest neighbor algorithms (KNN), random forest classification, and decision trees.
Data was sourced from several databases consisting of interactions between diseases, symptoms, genes, and affiliated drug molecules, which were then compiled into datasets expressed in binary.
NeuroCADR identified novel drug candidates for epilepsy that can be further approved through clinical trials.
arXiv Detail & Related papers (2023-09-04T03:21:43Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs.
In this review, we introduce guidelines on how to utilize deep learning methodologies and tools for drug repurposing.
arXiv Detail & Related papers (2022-02-08T09:42:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.