Feature-level augmentation to improve robustness of deep neural networks
to affine transformations
- URL: http://arxiv.org/abs/2202.05152v2
- Date: Fri, 11 Feb 2022 07:50:22 GMT
- Title: Feature-level augmentation to improve robustness of deep neural networks
to affine transformations
- Authors: Adrian Sandru, Mariana-Iuliana Georgescu, Radu Tudor Ionescu
- Abstract summary: Recent studies revealed that convolutional neural networks do not generalize well to small image transformations.
We propose to introduce data augmentation at intermediate layers of the neural architecture.
We develop the capacity of the neural network to cope with such transformations.
- Score: 22.323625542814284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies revealed that convolutional neural networks do not generalize
well to small image transformations, e.g. rotations by a few degrees or
translations of a few pixels. To improve the robustness to such
transformations, we propose to introduce data augmentation at intermediate
layers of the neural architecture, in addition to the common data augmentation
applied on the input images. By introducing small perturbations to activation
maps (features) at various levels, we develop the capacity of the neural
network to cope with such transformations. We conduct experiments on three
image classification benchmarks (Tiny ImageNet, Caltech-256 and Food-101),
considering two different convolutional architectures (ResNet-18 and
DenseNet-121). When compared with two state-of-the-art stabilization methods,
the empirical results show that our approach consistently attains the best
trade-off between accuracy and mean flip rate.
Related papers
- Inverting Visual Representations with Detection Transformers [0.8124699127636158]
We apply the approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer.
We demonstrate critical properties of Detection Transformers, including contextual shape robustness, inter-layer correlation, and preservation to color perturbations.
arXiv Detail & Related papers (2024-12-09T14:43:06Z) - WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Image edge enhancement for effective image classification [7.470763273994321]
We propose an edge enhancement-based method to enhance both accuracy and training speed of neural networks.
Our approach involves extracting high frequency features, such as edges, from images within the available dataset and fusing them with the original images.
arXiv Detail & Related papers (2024-01-13T10:01:34Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Multi-Context Dual Hyper-Prior Neural Image Compression [10.349258638494137]
We propose a Transformer-based nonlinear transform to efficiently capture both local and global information from the input image.
We also introduce a novel entropy model that incorporates two different hyperpriors to model cross-channel and spatial dependencies of the latent representation.
Our experiments show that our proposed framework performs better than the state-of-the-art methods in terms of rate-distortion performance.
arXiv Detail & Related papers (2023-09-19T17:44:44Z) - Mechanism of feature learning in convolutional neural networks [14.612673151889615]
We identify the mechanism of how convolutional neural networks learn from image data.
We present empirical evidence for our ansatz, including identifying high correlation between covariances of filters and patch-based AGOPs.
We then demonstrate the generality of our result by using the patch-based AGOP to enable deep feature learning in convolutional kernel machines.
arXiv Detail & Related papers (2023-09-01T16:30:02Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - StraIT: Non-autoregressive Generation with Stratified Image Transformer [63.158996766036736]
Stratified Image Transformer(StraIT) is a pure non-autoregressive(NAR) generative model.
Our experiments demonstrate that StraIT significantly improves NAR generation and out-performs existing DMs and AR methods.
arXiv Detail & Related papers (2023-03-01T18:59:33Z) - Robustcaps: a transformation-robust capsule network for image
classification [6.445605125467574]
We present a deep neural network model that exhibits the desirable property of transformation-robustness.
Our model, termed RobustCaps, uses group-equivariant convolutions in an improved capsule network model.
It achieves state-of-the-art accuracies on CIFAR-10, FashionMNIST, and CIFAR-100 datasets.
arXiv Detail & Related papers (2022-10-20T08:42:33Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.