論文の概要: Machine Learning and Data Science: Foundations, Concepts, Algorithms,
and Tools
- arxiv url: http://arxiv.org/abs/2202.05163v1
- Date: Thu, 3 Feb 2022 08:30:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-13 14:27:15.916329
- Title: Machine Learning and Data Science: Foundations, Concepts, Algorithms,
and Tools
- Title(参考訳): 機械学習とデータサイエンス:基礎、概念、アルゴリズム、ツール
- Authors: Milad Vazan
- Abstract要約: データは企業にとって重要な洞察を得て、パフォーマンスを向上させるためのツールであり、燃料なのです。
現在、データを使用しない業界は存在しない。
すべてはデータアナリストやデータサイエンティストによって行われます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Today, data is a tool and fuel for businesses to gain important insights and
improve their performance. Data science has dominated almost every industry in
the world. There is no industry in the world today that does not use data. But
who will get this insight? Who processes all the raw data? Everything is done
by a data analyst or a data scientist.
- Abstract(参考訳): 今日、データはビジネスにとって重要な洞察を得て、パフォーマンスを改善するためのツールであり、燃料となっている。
データサイエンスは世界のほぼすべての産業を支配してきた。
現在、データを使用しない業界は存在しない。
しかし、誰がこの洞察を得るだろうか?
生データを処理するのは誰か?
すべてはデータアナリストやデータサイエンティストによって行われます。
関連論文リスト
- DSBench: How Far Are Data Science Agents to Becoming Data Science Experts? [58.330879414174476]
現実的なタスクでデータサイエンスエージェントを評価するためのベンチマークであるDSBenchを紹介する。
このベンチマークには、466のデータ分析タスクと、EloquenceとKaggleのコンペからソースされた74のデータモデリングタスクが含まれている。
現状のLLM, LVLM, エージェントを評価したところ, 最高のエージェントはデータ解析タスクの34.12%しか解決できず, RPG(Relative Performance Gap)は34.74%であった。
論文 参考訳(メタデータ) (2024-09-12T02:08:00Z) - Dataset Growth [59.68869191071907]
InfoGrowthは、データのクリーニングとセレクションのための効率的なオンラインアルゴリズムである。
シングルモーダルタスクとマルチモーダルタスクの両方において、データ品質/効率を改善することができる。
論文 参考訳(メタデータ) (2024-05-28T16:43:57Z) - How to Do Machine Learning with Small Data? -- A Review from an
Industrial Perspective [1.443696537295348]
著者らは、"小さなデータ"の一般的な用語とそのエンジニアリングと産業アプリケーションの役割を解釈することに重点を置いている。
小さなデータはビッグデータと比較して様々な特性で定義され、機械学習形式が導入された。
産業アプリケーションにおける小さなデータによる機械学習の5つの重要な課題を提示する。
論文 参考訳(メタデータ) (2023-11-13T07:39:13Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - KGLiDS: A Platform for Semantic Abstraction, Linking, and Automation of Data Science [4.120803087965204]
本稿では、機械学習と知識グラフ技術を用いて、データサイエンスアーティファクトのセマンティクスとその接続を抽象化し、キャプチャするスケーラブルなプラットフォームKGLiDSを提案する。
この情報に基づいて、KGLiDSはデータディスカバリやパイプライン自動化など、さまざまなダウンストリームアプリケーションを可能にする。
論文 参考訳(メタデータ) (2023-03-03T20:31:04Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
データ拡張の背景、レビューされたデータ拡張技術の新しい包括的分類法、および各技術の強さと弱点(可能ならば)を提供する。
また、画像分類、オブジェクト検出、セマンティックセグメンテーションなどの3つの一般的なコンピュータビジョンタスクに対して、データ拡張効果の総合的な結果を提供する。
論文 参考訳(メタデータ) (2023-01-07T11:37:32Z) - Data Collection and Quality Challenges in Deep Learning: A Data-Centric
AI Perspective [16.480530590466472]
データ中心のAIプラクティスが主流になりつつある。
現実世界の多くのデータセットは小さく、汚く、偏りがあり、毒まみれである。
データ品質については、データ検証とデータクリーニング技術について研究する。
論文 参考訳(メタデータ) (2021-12-13T03:57:36Z) - "If we didn't solve small data in the past, how can we solve Big Data
today?" [0.0]
私たちは、"小さい"データや"大きい"データといった用語を調査し、それらの属性を理解し、価値を付加する方法について検討することを目指しています。
この研究によると、どんなに小さなデータが使われたにせよ、企業は依然として正しい技術とビジネスビジョンでビッグデータを活用できる。
論文 参考訳(メタデータ) (2021-11-08T16:31:01Z) - Synthetic Data: Opening the data floodgates to enable faster, more
directed development of machine learning methods [96.92041573661407]
機械学習における画期的な進歩の多くは、大量のリッチデータを利用できることに起因する。
多くの大規模データセットは、医療データなど高度に敏感であり、機械学習コミュニティでは広く利用できない。
プライバシー保証で合成データを生成することは、そのようなソリューションを提供します。
論文 参考訳(メタデータ) (2020-12-08T17:26:10Z) - Data Science: A Comprehensive Overview [42.98602883069444]
21世紀はビッグデータとデータ経済の時代に始まり、データDNAはすべてのデータに基づく有機体の本質的な構成要素となっている。
データDNAとその生物の適切な理解は、新しいデータ科学の分野と分析のキーストーンに依存している。
この記事では、データサイエンスと分析に関する豊富な観察、教訓、考察に加えて、総合的な全体像を描いている分野としては、初めてである。
論文 参考訳(メタデータ) (2020-07-01T02:33:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。