A Plug-and-Play Approach to Multiparametric Quantitative MRI: Image
Reconstruction using Pre-Trained Deep Denoisers
- URL: http://arxiv.org/abs/2202.05269v1
- Date: Thu, 10 Feb 2022 09:35:25 GMT
- Title: A Plug-and-Play Approach to Multiparametric Quantitative MRI: Image
Reconstruction using Pre-Trained Deep Denoisers
- Authors: Ketan Fatania, Carolin M. Pirkl, Marion I. Menzel, Peter Hall and
Mohammad Golbabaee
- Abstract summary: This paper proposes an iterative deep learning reconstruction approach to MRF which is adaptive to the forward acquisition process.
A CNN denoiser model is then tested on two simulated acquisition processes with distinct sub-sampling patterns.
The results show consistent consistent de-removal performance against both acquisition schemes and accurate mapping of tissues' quantitative bioproperties.
- Score: 4.910318162000904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current spatiotemporal deep learning approaches to Magnetic Resonance
Fingerprinting (MRF) build artefact-removal models customised to a particular
k-space subsampling pattern which is used for fast (compressed) acquisition.
This may not be useful when the acquisition process is unknown during training
of the deep learning model and/or changes during testing time. This paper
proposes an iterative deep learning plug-and-play reconstruction approach to
MRF which is adaptive to the forward acquisition process. Spatiotemporal image
priors are learned by an image denoiser i.e. a Convolutional Neural Network
(CNN), trained to remove generic white gaussian noise (not a particular
subsampling artefact) from data. This CNN denoiser is then used as a
data-driven shrinkage operator within the iterative reconstruction algorithm.
This algorithm with the same denoiser model is then tested on two simulated
acquisition processes with distinct subsampling patterns. The results show
consistent de-aliasing performance against both acquisition schemes and
accurate mapping of tissues' quantitative bio-properties. Software available:
https://github.com/ketanfatania/QMRI-PnP-Recon-POC
Related papers
- A plug-and-play synthetic data deep learning for undersampled magnetic
resonance image reconstruction [15.780203168452443]
Current deep learning methods for undersampled MRI reconstruction exhibit good performance in image de-aliasing.
We propose a deep plug-and-play method for undersampled MRI reconstruction, which effectively adapts to different sampling settings.
arXiv Detail & Related papers (2023-09-13T02:37:19Z) - Reinforcement Learning for Sampling on Temporal Medical Imaging
Sequences [0.0]
In this work, we apply double deep Q-learning and REINFORCE algorithms to learn the sampling strategy for dynamic image reconstruction.
We consider the data in the format of time series, and the reconstruction method is a pre-trained autoencoder-typed neural network.
We present a proof of concept that reinforcement learning algorithms are effective to discover the optimal sampling pattern.
arXiv Detail & Related papers (2023-08-28T23:55:23Z) - SiPRNet: End-to-End Learning for Single-Shot Phase Retrieval [8.820823270160695]
convolutional neural networks (CNN) have played important roles in various image reconstruction tasks.
In this paper, we design a novel CNN structure, named SiPRNet, to recover a signal from a single Fourier intensity measurement.
The proposed approach consistently outperforms other CNN-based and traditional optimization-based methods in single-shot maskless phase retrieval.
arXiv Detail & Related papers (2022-05-23T16:24:52Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - An Empirical Analysis of Recurrent Learning Algorithms In Neural Lossy
Image Compression Systems [73.48927855855219]
Recent advances in deep learning have resulted in image compression algorithms that outperform JPEG and JPEG 2000 on the standard Kodak benchmark.
In this paper, we perform the first large-scale comparison of recent state-of-the-art hybrid neural compression algorithms.
arXiv Detail & Related papers (2022-01-27T19:47:51Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Blind microscopy image denoising with a deep residual and multiscale
encoder/decoder network [0.0]
Deep multiscale convolutional encoder-decoder neural network is proposed.
The proposed model reaches on average 38.38 of PSNR and 0.98 of SSIM on a test set of 57458 images.
arXiv Detail & Related papers (2021-05-01T14:54:57Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Applications of Koopman Mode Analysis to Neural Networks [52.77024349608834]
We consider the training process of a neural network as a dynamical system acting on the high-dimensional weight space.
We show how the Koopman spectrum can be used to determine the number of layers required for the architecture.
We also show how using Koopman modes we can selectively prune the network to speed up the training procedure.
arXiv Detail & Related papers (2020-06-21T11:00:04Z) - Compressive MRI quantification using convex spatiotemporal priors and
deep auto-encoders [2.5060548079588516]
We propose a dictionary-free pipeline for multi-parametric image computing.
Our approach has two stages based on compressed sensing reconstruction and learned quantitative inference.
arXiv Detail & Related papers (2020-01-23T17:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.