Controlling energy conservation in quantum dynamics with independently
moving basis functions: Application to Multi-Configuration Ehrenfest
- URL: http://arxiv.org/abs/2202.05526v1
- Date: Fri, 11 Feb 2022 09:46:14 GMT
- Title: Controlling energy conservation in quantum dynamics with independently
moving basis functions: Application to Multi-Configuration Ehrenfest
- Authors: Mina Asaad, Lo\"ic Joubert-Doriol, and Artur F. Izmaylov
- Abstract summary: Application of time-dependent variational principle to a linear combination of frozen-width Gaussians provides a formalism where the total energy is conserved.
To allow for parallelization and acceleration of the computation, independent trajectories based on simplified equations of motion were suggested.
We offer a solution by using Lagrange multipliers to ensure the energy and norm conservation regardless of basis function trajectories or basis completeness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Application of the time-dependent variational principle to a linear
combination of frozen-width Gaussians describing the nuclear wavefunction
provides a formalism where the total energy is conserved. The computational
downside of this formalism is that trajectories of individual Gaussians are
solutions of a coupled system of differential equations, limiting
implementation to serial propagation algorithms. To allow for parallelization
and acceleration of the computation, independent trajectories based on
simplified equations of motion were suggested. Unfortunately, within practical
realizations involving finite Gaussian bases, this simplification leads to
breaking the energy conservation. We offer a solution for this problem by using
Lagrange multipliers to ensure the energy and norm conservation regardless of
basis function trajectories or basis completeness. We illustrate our approach
within the Multi-Configuration Ehrenfest method considering a linear vibronic
coupling model.
Related papers
- A diagrammatic method to compute the effective Hamiltonian of driven
nonlinear oscillators [0.0]
We present a new method, based on Feynman-like diagrams, for computing the effective Hamiltonian of driven nonlinear oscillators.
The pictorial structure associated with each diagram corresponds directly to a Hamiltonian term, the prefactor of which involves a simple counting of topologically equivalent diagrams.
Our method establishes the foundation of the dynamic control of quantum systems with the precision needed for future quantum machines.
arXiv Detail & Related papers (2023-04-26T16:31:21Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Family of Gaussian wavepacket dynamics methods from the perspective of a
nonlinear Schr\"odinger equation [0.0]
We show that several well-known Gaussian wavepacket dynamics methods, such as Heller's original thawed Gaussian approximation or Coalson and Karplus's variational Gaussian approximation, fit into this framework.
We study such a nonlinear Schr"odinger equation in general.
arXiv Detail & Related papers (2023-02-20T19:01:25Z) - No need for a grid: Adaptive fully-flexible gaussians for the
time-dependent Schr\"odinger equation [0.0]
Linear combinations of complex gaussian functions are shown to be an extremely flexible representation for the solution of the Schr"odinger equation in one spatial dimension.
We present a scheme based on the method of vertical lines, or Rothe's method, for propagation of such wavefunctions.
This paves the way for accurate and affordable solutions of the time-dependent Schr"odinger equation for multi-atom molecules beyond the Born--Oppenheimer approximation.
arXiv Detail & Related papers (2022-07-01T08:54:41Z) - Lindblad master equations for quantum systems coupled to dissipative
bosonic modes [0.0]
We derive Lindblad master equations for a subsystem whose dynamics is coupled to bosonic modes.
We apply this formalism to the dissipative Dicke model and derive a Lindblad master equation for the atomic spins.
This master equation accurately predicts the Dicke phase transition and gives the correct steady state.
arXiv Detail & Related papers (2022-03-07T11:21:48Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.