論文の概要: MusIAC: An extensible generative framework for Music Infilling
Applications with multi-level Control
- arxiv url: http://arxiv.org/abs/2202.05528v1
- Date: Fri, 11 Feb 2022 10:02:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-15 01:32:17.772505
- Title: MusIAC: An extensible generative framework for Music Infilling
Applications with multi-level Control
- Title(参考訳): MusIAC:マルチレベル制御による音楽入力アプリケーションのための拡張可能な生成フレームワーク
- Authors: Rui Guo, Ivor Simpson, Chris Kiefer, Thor Magnusson, Dorien Herremans
- Abstract要約: 埋め込み(いんふ)とは、周囲のマルチトラック音楽に与えられた音楽セクションを生成する作業のこと。
提案するフレームワークは、バーごとのトーン張力やポリフォニーレベルの追跡といった制御トークンの追加として、新しい制御トークンである。
インタラクティブな生成を可能にするために,Google Colabノートブックにモデルを提示する。
- 参考スコア(独自算出の注目度): 11.811562596386253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel music generation framework for music infilling, with a
user friendly interface. Infilling refers to the task of generating musical
sections given the surrounding multi-track music. The proposed
transformer-based framework is extensible for new control tokens as the added
music control tokens such as tonal tension per bar and track polyphony level in
this work. We explore the effects of including several musically meaningful
control tokens, and evaluate the results using objective metrics related to
pitch and rhythm. Our results demonstrate that adding additional control tokens
helps to generate music with stronger stylistic similarities to the original
music. It also provides the user with more control to change properties like
the music texture and tonal tension in each bar compared to previous research
which only provided control for track density. We present the model in a Google
Colab notebook to enable interactive generation.
- Abstract(参考訳): 本稿では,ユーザフレンドリーなインタフェースを備えた音楽インフィルディングのための新しい音楽生成フレームワークを提案する。
インフィルディング(infilling)は、周囲の多トラック音楽から音楽セクションを生成する作業である。
提案するトランスフォーマティブベースのフレームワークは,バーあたりの音圧やトラックポリフォニーレベルなどの付加的な音楽制御トークンとして,新たなコントロールトークン用に拡張可能である。
音楽的に意味のある制御トークンを複数含み、ピッチとリズムに関連する客観的指標を用いて結果を評価する。
以上の結果から,コントロールトークンの追加により,楽曲のスタイル的類似度が高まることが判明した。
また、従来のトラック密度の制御のみを提供していた研究と比較して、各バーの音色や音色張力などの特性を変えるためのコントロールも提供します。
インタラクティブな生成を可能にするために,Google Colabノートブックにモデルを提示する。
関連論文リスト
- MusiConGen: Rhythm and Chord Control for Transformer-Based Text-to-Music Generation [19.878013881045817]
MusiConGenは、一時条件付きトランスフォーマーベースのテキスト-音楽モデルである。
条件信号として自動的に抽出されたリズムとコードを統合する。
MusiConGenは,特定の条件に整合したリアルなバックトラック音楽を生成することができることを示す。
論文 参考訳(メタデータ) (2024-07-21T05:27:53Z) - BandControlNet: Parallel Transformers-based Steerable Popular Music Generation with Fine-Grained Spatiotemporal Features [19.284531698181116]
BandControlNetは、複数の音楽シーケンスに対処し、与えられた時間的制御機能に合わせた高品質な音楽サンプルを生成するように設計されている。
提案したBandControlNetは、ほとんどの客観的指標において、忠実度と推論速度の点で他の条件付き音楽生成モデルよりも優れている。
短いデータセットでトレーニングされた主観評価は、最先端のモデルに匹敵する品質の音楽を生成できるが、BandControlNetでは大幅にパフォーマンスが向上する。
論文 参考訳(メタデータ) (2024-07-15T06:33:25Z) - MuseBarControl: Enhancing Fine-Grained Control in Symbolic Music Generation through Pre-Training and Counterfactual Loss [51.85076222868963]
制御信号と対応する音楽トークンを直接リンクする事前学習タスクを導入する。
次に、生成した音楽と制御プロンプトとの整合性を向上する新たな対実的損失を実現する。
論文 参考訳(メタデータ) (2024-07-05T08:08:22Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Arrange, Inpaint, and Refine: Steerable Long-term Music Audio Generation and Editing via Content-based Controls [6.176747724853209]
LLM(Large Language Models)は、高品質な音楽を生成する上で有望であるが、自動回帰生成に焦点をあてることで、音楽編集タスクにおける有用性を制限している。
本稿では,パラメータ効率の高いヘテロジニアスアダプタとマスキングトレーニングスキームを組み合わせた新しいアプローチを提案する。
提案手法は, フレームレベルのコンテンツベース制御を統合し, トラックコンディショニングとスコアコンディショニングによる音楽アレンジメントを容易にする。
論文 参考訳(メタデータ) (2024-02-14T19:00:01Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Museformer: Transformer with Fine- and Coarse-Grained Attention for
Music Generation [138.74751744348274]
本研究では,音楽生成に新たな細粒度・粗粒度対応トランスフォーマーであるMuseformerを提案する。
具体的には、細かな注意を払って、特定のバーのトークンは、音楽構造に最も関係のあるバーのトークンに、直接参加する。
粗い注意を払って、トークンは計算コストを減らすために、それぞれのトークンではなく他のバーの要約にのみ参加する。
論文 参考訳(メタデータ) (2022-10-19T07:31:56Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
D2M-GAN(Dance2Music-GAN, D2M-GAN, D2M-GAN)は、ダンスビデオに条件付けされた楽曲のサンプルを生成する新しいマルチモーダルフレームワークである。
提案フレームワークは,ダンスビデオフレームと人体の動きを入力とし,対応する入力に付随する音楽サンプルを生成することを学習する。
論文 参考訳(メタデータ) (2022-04-01T17:53:39Z) - MMM : Exploring Conditional Multi-Track Music Generation with the
Transformer [9.569049935824227]
マルチトラック音楽を生成することができるトランスフォーマーアーキテクチャに基づく生成システムを提案する。
我々は、各トラックといくつかのトラックについて、時間順に順序付けされた音楽イベントのシーケンスを1つのシーケンスに生成する。
これによりTransformerの注意機構が利用でき、長期的依存関係を十分に処理できる。
論文 参考訳(メタデータ) (2020-08-13T02:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。