On characterising assemblages in Einstein-Podolsky-Rosen scenarios
- URL: http://arxiv.org/abs/2202.05553v1
- Date: Fri, 11 Feb 2022 11:08:21 GMT
- Title: On characterising assemblages in Einstein-Podolsky-Rosen scenarios
- Authors: Vinicius P. Rossi, Matty J. Hoban, Ana Bel\'en Sainz
- Abstract summary: We focus on exploring the characterisation of Einstein-Podolsky-Rosen inference (a.k.a. steering)
A signature of non-classicality manifested when one or more parties in a Bell scenario have their systems and measurements described by quantum theory, rather than being treated as black boxes.
We show that so-called almost quantum assemblages satisfy the principle of macroscopic noncontextuality, and demonstrate that a subset of almost quantum correlations recover almost quantum assemblages in this approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Characterising non-classical quantum phenomena is crucial not only from a
fundamental perspective, but also to better understand its capabilities for
information processing and communication tasks. In this work, we focus on
exploring the characterisation of Einstein-Podolsky-Rosen inference (a.k.a.
steering): a signature of non-classicality manifested when one or more parties
in a Bell scenario have their systems and measurements described by quantum
theory, rather than being treated as black boxes. We propose a way of
characterising common-cause assemblages from the correlations that arise when
the trusted party performs tomographically-complete measurements on their share
of the experiment, and discuss the advantages and challenges of this approach.
Within this framework, we show that so-called almost quantum assemblages
satisfy the principle of macroscopic noncontextuality, and demonstrate that a
subset of almost quantum correlations recover almost quantum assemblages in
this approach.
Related papers
- Observational-Interventional Bell Inequalities [0.3769303106863453]
Generalizations of Bell's theorem, particularly within quantum networks, are being analyzed through causal inference lens.
We propose novel hybrid Bell inequalities integrating observational and interventional data.
We show a significant enhancement regarding threshold detection efficiencies for quantum violations.
arXiv Detail & Related papers (2024-04-07T16:49:25Z) - Quantum and classical coarsening and their interplay with the
Kibble-Zurek mechanism [0.0]
Out-of-equilibrium dynamics of a quantum system driven across a quantum phase transition is an important problem.
We develop a universal description of such coarsening dynamics and their interplay with the Kibble-Zurek mechanism.
We highlight how such coarsening dynamics can be directly studied in today's "synthetic" quantum many-body systems.
arXiv Detail & Related papers (2024-01-26T19:00:00Z) - Quantum non-Markovianity: Overview and recent developments [2.122752621320654]
In the current era of noisy intermediate-scale quantum (NISQ) devices, research in the theory of open system dynamics has a crucial role to play.
This review is to address the fundamental question of defining and characterizing memory effects -- broadly referred to as quantum non-Markovianity.
arXiv Detail & Related papers (2023-03-22T07:54:58Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - A hybrid framework for estimating nonlinear functions of quantum states [2.0295402551142163]
Estimating nonlinear functions of quantum states, such as the moment $tr(rhom)$, is of fundamental and practical interest in quantum science and technology.
We show a quantum-classical hybrid framework to measure them, where the quantum part is constituted by the generalized swap test, and the classical part is realized by postprocessing the result from randomized measurements.
arXiv Detail & Related papers (2022-08-17T17:22:26Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Performance of coherent-state quantum target detection in the context of
asymmetric hypothesis testing [0.0]
Quantum-inspired designs of quantum lidar/radar could be studied in the context of asymmetric hypothesis testing.
We discuss that, for typical finite-size regimes, the second- and third-order expansions associated with this approach are not sufficient to prove quantum advantage.
arXiv Detail & Related papers (2021-09-02T15:09:58Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.