Ergodic Theory of Inhomogeneous Quantum Processes
- URL: http://arxiv.org/abs/2506.12280v1
- Date: Sat, 14 Jun 2025 00:04:59 GMT
- Title: Ergodic Theory of Inhomogeneous Quantum Processes
- Authors: Abdessatar Souissi,
- Abstract summary: This work presents a rigorous framework for understanding ergodicity and mixing in time-inhomogeneous quantum systems.<n>A key contribution is the development of a quantum Markov-Dobrushin approach to characterize mixing behavior.<n>Results contribute to the mathematical foundations of quantum dynamics and support the broader goal of advancing quantum information science.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a rigorous framework for understanding ergodicity and mixing in time-inhomogeneous quantum systems. By analyzing quantum processes driven by sequences of quantum channels, we distinguish between forward and backward dynamics and reveal their fundamental asymmetries. A key contribution is the development of a quantum Markov-Dobrushin approach to characterize mixing behavior, offering clear criteria for convergence and exponential stability. The framework not only generalizes classical and homogeneous quantum models but also applies to non-translation-invariant matrix product states, highlighting its relevance to real-world quantum systems. These results contribute to the mathematical foundations of quantum dynamics and support the broader goal of advancing quantum information science.
Related papers
- Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Quantum Resource Theories beyond Convexity [0.0]
A class of quantum resource theories, based on non-linear standardovian-shape sets, is presented.<n>Proposed techniques provide useful tools to describe quantum discord, total composite quantum systems and to estimate non-Markity of an analyzed quantum dynamics.<n>In all cases, the non-linear witnesses introduced here outperform the standard witnesses.
arXiv Detail & Related papers (2024-05-09T14:06:40Z) - Does Quantum Mechanics Breed Larger, More Intricate Quantum Theories?
The Case for Experience-Centric Quantum Theory and the Interactome of Quantum
Theories [0.0]
We show that the recently proposed experience-centric quantum theory (ECQT) is a larger and richer theory of quantum behaviors.
ECQT allows the quantum information of the closed quantum system's developed state history to continually contribute to defining manybody interactions.
The interplay of unitarity and non-Markovianity in ECQT brings about a host of diverse behavioral phases.
arXiv Detail & Related papers (2023-08-04T16:33:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - A thorough introduction to non-relativistic matrix mechanics in
multi-qudit systems with a study on quantum entanglement and quantum
quantifiers [0.0]
This article provides a deep and abiding understanding of non-relativistic matrix mechanics.
We derive and analyze the respective 1-qubit, 1-qutrit, 2-qubit, and 2-qudit coherent and incoherent density operators.
We also address the fundamental concepts of quantum nondemolition measurements, quantum decoherence and, particularly, quantum entanglement.
arXiv Detail & Related papers (2021-09-14T05:06:47Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.