論文の概要: Controlling Confusion via Generalisation Bounds
- arxiv url: http://arxiv.org/abs/2202.05560v1
- Date: Fri, 11 Feb 2022 11:35:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-14 14:51:30.476889
- Title: Controlling Confusion via Generalisation Bounds
- Title(参考訳): 一般化境界による拡散制御
- Authors: Reuben Adams and John Shawe-Taylor and Benjamin Guedj
- Abstract要約: PAC-Bayes理論を拡張して、多クラス分類のパフォーマンスのきめ細かい境界を与えることができる。
境界は離散化された誤差型の全ての重み付けに一様であるため、トレーニング時に予測されない重み付けに使用できる。
- 参考スコア(独自算出の注目度): 10.051153859223172
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We establish new generalisation bounds for multiclass classification by
abstracting to a more general setting of discretised error types. Extending the
PAC-Bayes theory, we are hence able to provide fine-grained bounds on
performance for multiclass classification, as well as applications to other
learning problems including discretisation of regression losses. Tractable
training objectives are derived from the bounds. The bounds are uniform over
all weightings of the discretised error types and thus can be used to bound
weightings not foreseen at training, including the full confusion matrix in the
multiclass classification case.
- Abstract(参考訳): 本研究では,多重クラス分類のための新しい一般化境界を,より一般的な離散化エラー型に抽象化することで確立する。
従って、pac-bayes理論を拡張して、マルチクラス分類のパフォーマンスに関するきめ細かな境界を提供し、回帰損失の離散化を含む他の学習問題にも応用することができる。
トラクタブルトレーニングの目的は、境界から導き出される。
境界は離散化された誤差型の全ての重み付けに一様であるため、多クラス分類の場合の完全な混乱行列を含む訓練時に予測されない重み付けに使用できる。
関連論文リスト
- Tighter Generalisation Bounds via Interpolation [16.74864438507713]
本稿では、$(f, Gamma)$-divergenceに基づいて、新しいPAC-Bayes一般化境界を導出するレシピを提案する。
また、PAC-Bayes一般化バウンダリでは、一連の確率発散を補間する。
論文 参考訳(メタデータ) (2024-02-07T18:55:22Z) - Correcting Underrepresentation and Intersectional Bias for Classification [49.1574468325115]
我々は、表現不足のバイアスによって破損したデータから学習する問題を考察する。
偏りのないデータの少ない場合、グループワイドのドロップアウト率を効率的に推定できることが示される。
本アルゴリズムは,有限VC次元のモデルクラスに対して,効率的な学習を可能にする。
論文 参考訳(メタデータ) (2023-06-19T18:25:44Z) - Loss Minimization through the Lens of Outcome Indistinguishability [11.709566373491619]
我々は凸損失と最近のOmnipredictionの概念について新しい視点を提示する。
設計上、Los OIは直感的かつ直感的に全滅を意味する。
一般化モデルから生じる損失の重要な集合に対する損失 OI は、完全な多重校正を必要としないことを示す。
論文 参考訳(メタデータ) (2022-10-16T22:25:27Z) - PACMAN: PAC-style bounds accounting for the Mismatch between Accuracy
and Negative log-loss [28.166066663983674]
分類タスクに対する機械学習アルゴリズムの最終的な性能は通常、テストデータセットに基づく経験的エラー確率(または精度)の観点から測定される。
分類タスクの場合、この損失関数はよく知られたクロスエントロピーリスクにつながる負のログロスである。
本稿では, 検定のミスマッチを考慮した一般化ギャップに対するポイントワイズPACに基づく分析と, 負のログロスによるトレーニングを提案する。
論文 参考訳(メタデータ) (2021-12-10T14:00:22Z) - Unbiased Loss Functions for Multilabel Classification with Missing
Labels [2.1549398927094874]
欠落ラベルは、極端なマルチラベル分類(XMC)タスクにおいてユビキタスな現象である。
本稿では,異なるマルチラベルリダクションに対する特異な非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-09-23T10:39:02Z) - Invariance Principle Meets Information Bottleneck for
Out-of-Distribution Generalization [77.24152933825238]
線形分類タスクには分布シフトの強い制限が必要であり、そうでなければ OOD の一般化は不可能であることを示す。
不変な特徴がラベルに関するすべての情報をキャプチャし、そうでなければ既存の成功を保っている場合、情報ボトルネックの形式が重要な障害に対処するのに役立つことを証明します。
論文 参考訳(メタデータ) (2021-06-11T20:42:27Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - A Unified Joint Maximum Mean Discrepancy for Domain Adaptation [73.44809425486767]
本論文は,最適化が容易なjmmdの統一形式を理論的に導出する。
統合JMMDから、JMMDは分類に有利な特徴ラベル依存を低下させることを示す。
本稿では,その依存を促進する新たなmmd行列を提案し,ラベル分布シフトにロバストな新しいラベルカーネルを考案する。
論文 参考訳(メタデータ) (2021-01-25T09:46:14Z) - Relative Deviation Margin Bounds [55.22251993239944]
我々はRademacher複雑性の観点から、分布依存と一般家庭に有効な2種類の学習境界を与える。
有限モーメントの仮定の下で、非有界な損失関数に対する分布依存的一般化境界を導出する。
論文 参考訳(メタデータ) (2020-06-26T12:37:17Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z) - Sample Complexity of Uniform Convergence for Multicalibration [43.10452387619829]
多重校正誤差に対処し、予測誤差から分離する。
我々の研究は、多重校正誤差の統一収束保証のためのサンプル複雑性境界を与える。
論文 参考訳(メタデータ) (2020-05-04T18:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。