論文の概要: Of Dice and Games: A Theory of Generalized Boosting
- arxiv url: http://arxiv.org/abs/2412.08012v1
- Date: Wed, 11 Dec 2024 01:38:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:04:03.580437
- Title: Of Dice and Games: A Theory of Generalized Boosting
- Title(参考訳): Of Dice and Games: A Theory of Generalized Boosting
- Authors: Marco Bressan, Nataly Brukhim, Nicolò Cesa-Bianchi, Emmanuel Esposito, Yishay Mansour, Shay Moran, Maximilian Thiessen,
- Abstract要約: 我々は、コスト感受性と多目的損失の両方を組み込むために、ブースティングの有名な理論を拡張した。
我々は、コスト感受性と多目的強化の包括的理論を開発し、弱い学習保証の分類を提供する。
我々の特徴付けは、昇降の幾何学的解釈に依存しており、コスト感受性と多目的損失の間の驚くべき等価性を明らかにしている。
- 参考スコア(独自算出の注目度): 61.752303337418475
- License:
- Abstract: Cost-sensitive loss functions are crucial in many real-world prediction problems, where different types of errors are penalized differently; for example, in medical diagnosis, a false negative prediction can lead to worse consequences than a false positive prediction. However, traditional PAC learning theory has mostly focused on the symmetric 0-1 loss, leaving cost-sensitive losses largely unaddressed. In this work, we extend the celebrated theory of boosting to incorporate both cost-sensitive and multi-objective losses. Cost-sensitive losses assign costs to the entries of a confusion matrix, and are used to control the sum of prediction errors accounting for the cost of each error type. Multi-objective losses, on the other hand, simultaneously track multiple cost-sensitive losses, and are useful when the goal is to satisfy several criteria at once (e.g., minimizing false positives while keeping false negatives below a critical threshold). We develop a comprehensive theory of cost-sensitive and multi-objective boosting, providing a taxonomy of weak learning guarantees that distinguishes which guarantees are trivial (i.e., can always be achieved), which ones are boostable (i.e., imply strong learning), and which ones are intermediate, implying non-trivial yet not arbitrarily accurate learning. For binary classification, we establish a dichotomy: a weak learning guarantee is either trivial or boostable. In the multiclass setting, we describe a more intricate landscape of intermediate weak learning guarantees. Our characterization relies on a geometric interpretation of boosting, revealing a surprising equivalence between cost-sensitive and multi-objective losses.
- Abstract(参考訳): コストセンシティブな損失関数は多くの現実の予測問題において重要であり、様々な種類のエラーが異なる形でペナル化される。
しかしながら、従来のPAC学習理論は、主に対称的な0-1損失に焦点を合わせており、コスト感受性の損失は、ほとんど適応していない。
本研究では,コスト感受性と多目的損失を両立させるために,昇降理論を拡張した。
コストに敏感な損失は、混乱行列のエントリにコストを割り当て、各エラータイプのコストを考慮した予測エラーの総和を制御するために使用される。
一方、多目的損失は、同時に複数のコスト感受性損失を追跡し、目標が複数の基準を一度に満たす場合(例えば、偽陽性を最小化しつつ、偽陰性を臨界閾値以下に維持する)に有用である。
我々は、コスト感受性と多目的性の向上に関する総合的な理論を開発し、弱い学習保証の分類を提供し、どの保証が自明であるか(つまり、常に達成できる)、どの保証が強化可能か(すなわち、強い学習)、どの保証が中間的であるかを区別する。
二分法分類では、弱い学習保証は自明か強化可能であるという二分法を確立する。
多クラス設定では、中間的弱学習保証のより複雑な景観を記述する。
我々の特徴付けは、上昇の幾何学的解釈に依存しており、コスト感受性と多目的損失の間の驚くべき等価性を明らかにしている。
関連論文リスト
- Balancing the Scales: A Theoretical and Algorithmic Framework for Learning from Imbalanced Data [35.03888101803088]
本稿では,不均衡な分類における一般化を解析するための新しい理論的枠組みを提案する。
本稿では,2値設定と複数値設定の両方に新しいクラス不均衡なマージン損失関数を提案し,その強い$H$一貫性を証明し,それに対応する学習保証を導出する。
我々は、信頼率を組み込んだ新しい一般学習アルゴリズムIMMAXを考案し、様々な仮説集合に適用する。
論文 参考訳(メタデータ) (2025-02-14T18:57:16Z) - Top-$k$ Classification and Cardinality-Aware Prediction [30.389055604165222]
和和と制約付き損失は、上位の$k$損失に対する$H$一貫性境界によって支持されることを示す。
本稿では、インスタンス依存型コスト依存学習を通じて、基数認識損失関数を導入する。
これらの損失を最小限に抑えることで、トップ$kの分類のための新しい濃度認識アルゴリズムが生まれる。
論文 参考訳(メタデータ) (2024-03-28T17:45:03Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
そこで本研究では,データ依存型コンダクタンス(Data-dependent contraction)と呼ばれる手法を提案する。
この技術に加えて、不均衡学習のための微粒な一般化境界が確立され、再重み付けとロジット調整の謎を明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-10-07T09:15:08Z) - The Adversarial Consistency of Surrogate Risks for Binary Classification [20.03511985572199]
逆行訓練は、各例が小さなボール内で悪質に破損する可能性がある場合に、予想される0$-$1$損失を最小限にすることを目指している。
我々は、一貫した代理損失関数の集合の単純かつ完全な特徴づけを与える。
本結果から, 逆一貫したサロゲートのクラスは, 標準設定よりもかなり小さいことが明らかとなった。
論文 参考訳(メタデータ) (2023-05-17T05:27:40Z) - Loss Minimization through the Lens of Outcome Indistinguishability [11.709566373491619]
我々は凸損失と最近のOmnipredictionの概念について新しい視点を提示する。
設計上、Los OIは直感的かつ直感的に全滅を意味する。
一般化モデルから生じる損失の重要な集合に対する損失 OI は、完全な多重校正を必要としないことを示す。
論文 参考訳(メタデータ) (2022-10-16T22:25:27Z) - Leveraged Weighted Loss for Partial Label Learning [64.85763991485652]
部分ラベル学習は、各インスタンスに候補ラベルのセットが割り当てられるデータを扱うが、そのうちの1つだけが真実である。
部分ラベルからの学習に関する多くの方法論の研究にもかかわらず、リスク一貫した性質に関する理論的理解はいまだに欠けている。
本稿では,テキスト重み付き損失(LW)と呼ばれる損失関数のファミリーを提案する。これはまず,部分ラベル上の損失と非部分的な損失とのトレードオフを検討するために,レバレッジパラメータ$beta$を導入する。
論文 参考訳(メタデータ) (2021-06-10T13:25:13Z) - Rethinking and Reweighting the Univariate Losses for Multi-Label
Ranking: Consistency and Generalization [44.73295800450414]
(部分)ランキング損失は、マルチラベル分類の一般的な評価尺度です。
既存の理論と実践の間にはギャップがある -- ペアワイズな損失は有望なパフォーマンスをもたらすが一貫性を欠く可能性がある。
論文 参考訳(メタデータ) (2021-05-10T09:23:27Z) - Lower-bounded proper losses for weakly supervised classification [73.974163801142]
本稿では,弱いラベルが与えられた分類の弱い教師付き学習の問題について議論する。
サベージ表現を双対化する教師付き学習における適切な損失を表す表現定理を導出する。
提案手法の有効性を,不適切な損失や非有界損失と比較して実験的に実証した。
論文 参考訳(メタデータ) (2021-03-04T08:47:07Z) - A Symmetric Loss Perspective of Reliable Machine Learning [87.68601212686086]
平衡誤差率 (BER) の最小化において, 対称損失が破損ラベルからのロバストな分類をいかに生み出すかを検討する。
我々は、関連するキーワードからのみ学習したい問題において、AUC手法が自然言語処理にどのように役立つかを実証する。
論文 参考訳(メタデータ) (2021-01-05T06:25:47Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。