SuperCon: Supervised Contrastive Learning for Imbalanced Skin Lesion
Classification
- URL: http://arxiv.org/abs/2202.05685v1
- Date: Fri, 11 Feb 2022 15:19:36 GMT
- Title: SuperCon: Supervised Contrastive Learning for Imbalanced Skin Lesion
Classification
- Authors: Keyu Chen, Di Zhuang, J. Morris Chang
- Abstract summary: SuperCon is a two-stage training strategy to overcome the class imbalance problem on skin lesion classification.
Our two-stage training strategy effectively addresses the class imbalance classification problem, and significantly improves existing works in terms of F1-score and AUC score.
- Score: 9.265557367859637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) have achieved great success in skin
lesion classification. A balanced dataset is required to train a good model.
However, due to the appearance of different skin lesions in practice, severe or
even deadliest skin lesion types (e.g., melanoma) naturally have quite small
amount represented in a dataset. In that, classification performance
degradation occurs widely, it is significantly important to have CNNs that work
well on class imbalanced skin lesion image dataset. In this paper, we propose
SuperCon, a two-stage training strategy to overcome the class imbalance problem
on skin lesion classification. It contains two stages: (i) representation
training that tries to learn a feature representation that closely aligned
among intra-classes and distantly apart from inter-classes, and (ii) classifier
fine-tuning that aims to learn a classifier that correctly predict the label
based on the learnt representations. In the experimental evaluation, extensive
comparisons have been made among our approach and other existing approaches on
skin lesion benchmark datasets. The results show that our two-stage training
strategy effectively addresses the class imbalance classification problem, and
significantly improves existing works in terms of F1-score and AUC score,
resulting in state-of-the-art performance.
Related papers
- Addressing Imbalance for Class Incremental Learning in Medical Image Classification [14.242875524728495]
We introduce two plug-in methods to mitigate the adverse effects of imbalance.
First, we propose a CIL-balanced classification loss to mitigate the classification bias toward majority classes.
Second, we propose a distribution margin loss that not only alleviates the inter-class overlap in embedding space but also enforces the intra-class compactness.
arXiv Detail & Related papers (2024-07-18T17:59:44Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
We study the behavior of Continual Learning (CL) strategies in medical imaging regarding classification performance.
We evaluate the Replay, Learning without Forgetting (LwF), LwF, and Pseudo-Label strategies.
LwF and Pseudo-Label exhibit optimal classification performance, but when including fairness metrics in the evaluation, it is clear that Pseudo-Label is less biased.
arXiv Detail & Related papers (2024-04-10T09:48:52Z) - Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
We propose a novel uncertainty-guided class imbalance learning framework for imbalanced social event detection tasks.
Our model significantly improves social event representation and classification tasks in almost all classes, especially those uncertain ones.
arXiv Detail & Related papers (2023-10-30T03:32:04Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories.
We introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution.
BACL consistently achieves performance improvements across various datasets with different backbones and architectures.
arXiv Detail & Related papers (2023-08-04T09:11:07Z) - SPLAL: Similarity-based pseudo-labeling with alignment loss for
semi-supervised medical image classification [11.435826510575879]
Semi-supervised learning (SSL) methods can mitigate challenges by leveraging both labeled and unlabeled data.
SSL methods for medical image classification need to address two key challenges: (1) estimating reliable pseudo-labels for the images in the unlabeled dataset and (2) reducing biases caused by class imbalance.
In this paper, we propose a novel SSL approach, SPLAL, that effectively addresses these challenges.
arXiv Detail & Related papers (2023-07-10T14:53:24Z) - Dynamic Sub-Cluster-Aware Network for Few-Shot Skin Disease
Classification [31.539129126161978]
This paper introduces a novel approach called the Sub-Cluster-Aware Network (SCAN) that enhances accuracy in diagnosing rare skin diseases.
The key insight motivating the design of SCAN is the observation that skin disease images within a class often exhibit multiple sub-clusters.
We evaluate the proposed approach on two public datasets for few-shot skin disease classification.
arXiv Detail & Related papers (2022-07-03T16:06:04Z) - Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with
Class Imbalance [65.61909544178603]
We study a practical yet challenging problem of class imbalanced semi-supervised FL (imFed-Semi)
This imFed-Semi problem is addressed by a novel dynamic bank learning scheme, which improves client training by exploiting class proportion information.
We evaluate our approach on two public real-world medical datasets, including the intracranial hemorrhage diagnosis with 25,000 CT slices and skin lesion diagnosis with 10,015 dermoscopy images.
arXiv Detail & Related papers (2022-06-27T06:51:48Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - CS-AF: A Cost-sensitive Multi-classifier Active Fusion Framework for
Skin Lesion Classification [9.265557367859637]
Convolutional neural networks (CNNs) have achieved the state-of-the-art performance in skin lesion analysis.
We present CS-AF, a cost-sensitive multi-classifier active fusion framework for skin lesion classification.
arXiv Detail & Related papers (2020-04-25T05:48:14Z) - Melanoma Detection using Adversarial Training and Deep Transfer Learning [6.22964000148682]
We propose a two-stage framework for automatic classification of skin lesion images.
In the first stage, we leverage the inter-class variation of the data distribution for the task of conditional image synthesis.
In the second stage, we train a deep convolutional neural network for skin lesion classification.
arXiv Detail & Related papers (2020-04-14T22:46:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.