論文の概要: Molecule Generation from Input-Attributions over Graph Convolutional
Networks
- arxiv url: http://arxiv.org/abs/2202.05703v1
- Date: Tue, 25 Jan 2022 09:13:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-20 18:06:20.158423
- Title: Molecule Generation from Input-Attributions over Graph Convolutional
Networks
- Title(参考訳): グラフ畳み込みネットワーク上の入力分布からの分子生成
- Authors: Dylan Savoia, Alessio Ragno, Roberto Capobianco
- Abstract要約: 本稿では,グラフ畳み込みネットワークモデルと新しい分子を生成する入力帰属法を含む自動プロセスを提案する。
また、このような自動ツールの実用化において、過度な最適化と適用性の問題についても検討し、これらを2つの重要な側面として認識する。
- 参考スコア(独自算出の注目度): 4.468952886990851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is well known that Drug Design is often a costly process both in terms of
time and economic effort. While good Quantitative Structure-Activity
Relationship models (QSAR) can help predicting molecular properties without the
need to synthesize them, it is still required to come up with new molecules to
be tested. This is mostly done in lack of tools to determine which
modifications are more promising or which aspects of a molecule are more
influential for the final activity/property. Here we present an automatic
process which involves Graph Convolutional Network models and input-attribution
methods to generate new molecules. We also explore the problems of
over-optimization and applicability, recognizing them as two important aspects
in the practical use of such automatic tools.
- Abstract(参考訳): 医薬品デザインは時間と経済の両面でコストのかかるプロセスであることがよく知られている。
優れた量的構造-活性関係モデル(QSAR)は、分子特性を合成することなく予測するのに役立つが、テストする新しい分子を考案する必要がある。
これは主に、どの修飾がより有望か、分子のどの側面が最終活性/プロパティに影響を及ぼすかを決定するためのツールが欠如している。
本稿では、グラフ畳み込みネットワークモデルと新しい分子を生成する入力帰属法を含む自動プロセスを提案する。
また,このような自動ツールの実用化における2つの重要な側面として,過剰最適化と適用可能性の問題についても検討する。
関連論文リスト
- Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Interpretable Molecular Graph Generation via Monotonic Constraints [19.401468196146336]
ディープグラフ生成モデルは、分子設計をグラフ生成問題として扱う。
既存のモデルには多くの欠点があり、解釈性や所望の分子特性に対する制御性が低い。
本稿では,分子生成の解釈可能なモデルと深層制御可能なモデルを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-28T08:35:56Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
分子のトポロジカルデータ解析(TDA)表現を付加したSMILES変分自動エンコーダ(VAE)を提案する。
実験の結果, このTDA拡張により, SMILES VAEは3次元幾何学と電子特性の複雑な関係を捉えることができることがわかった。
論文 参考訳(メタデータ) (2021-06-08T15:49:21Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
計算モデルや分子表現にまたがる包括的な機械学習ツール群であるMoleculeKitを開発した。
これらの表現に基づいて構築されたMoeculeKitには、ディープラーニングと、グラフとシーケンスデータのための従来の機械学習方法の両方が含まれている。
オンラインおよびオフラインの抗生物質発見と分子特性予測のタスクの結果から、MoneculeKitは以前の方法よりも一貫した改善を実現していることがわかる。
論文 参考訳(メタデータ) (2020-12-02T02:09:31Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。