論文の概要: Interpretable Molecular Graph Generation via Monotonic Constraints
- arxiv url: http://arxiv.org/abs/2203.00412v1
- Date: Mon, 28 Feb 2022 08:35:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-02 13:52:32.859868
- Title: Interpretable Molecular Graph Generation via Monotonic Constraints
- Title(参考訳): 単調制約による解釈可能な分子グラフ生成
- Authors: Yuanqi Du and Xiaojie Guo and Amarda Shehu and Liang Zhao
- Abstract要約: ディープグラフ生成モデルは、分子設計をグラフ生成問題として扱う。
既存のモデルには多くの欠点があり、解釈性や所望の分子特性に対する制御性が低い。
本稿では,分子生成の解釈可能なモデルと深層制御可能なモデルを用いた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 19.401468196146336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing molecules with specific properties is a long-lasting research
problem and is central to advancing crucial domains such as drug discovery and
material science. Recent advances in deep graph generative models treat
molecule design as graph generation problems which provide new opportunities
toward the breakthrough of this long-lasting problem. Existing models, however,
have many shortcomings, including poor interpretability and controllability
toward desired molecular properties. This paper focuses on new methodologies
for molecule generation with interpretable and controllable deep generative
models, by proposing new monotonically-regularized graph variational
autoencoders. The proposed models learn to represent the molecules with latent
variables and then learn the correspondence between them and molecule
properties parameterized by polynomial functions. To further improve the
intepretability and controllability of molecule generation towards desired
properties, we derive new objectives which further enforce monotonicity of the
relation between some latent variables and target molecule properties such as
toxicity and clogP. Extensive experimental evaluation demonstrates the
superiority of the proposed framework on accuracy, novelty, disentanglement,
and control towards desired molecular properties. The code is open-source at
https://anonymous.4open.science/r/MDVAE-FD2C.
- Abstract(参考訳): 特定の性質を持つ分子を設計することは長い研究課題であり、創薬や物質科学のような重要な領域の進歩の中心である。
深層グラフ生成モデルの最近の進歩は、分子設計をグラフ生成問題として扱い、この長期的問題の突破口となる新しい機会を提供する。
しかし、既存のモデルには多くの欠点があり、解釈性や所望の分子特性に対する制御性が低い。
本稿では,新しい単調なグラフ変分オートエンコーダを提案することにより,解釈可能かつ制御可能な深部生成モデルを用いた分子生成の新しい手法を提案する。
提案したモデルは、潜伏変数を持つ分子を表現し、多項式関数によってパラメータ化された分子の性質とそれらの対応を学習する。
分子生成の予測可能性と制御性をさらに向上させるため、いくつかの潜在変数と毒性やclogpなどの標的分子特性の関係の単調性をさらに強制する新たな目的を導出する。
広範な実験評価により,提案手法の精度,新規性,不連続性,所望の分子特性に対する制御性が実証された。
コードはhttps://anonymous.4open.science/r/MDVAE-FD2Cで公開されている。
関連論文リスト
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
生成過程の化学的妥当性、解釈可能性、可変分子サイズへの柔軟性は、計算材料設計における生成モデルに残る課題の1つである。
本稿では,分子生成を離散的かつ解釈可能なステップの列に分解する自己回帰的手法を提案する。
この結果から,本モデルでは,提案した多目的目標目標に応じて,生成分布を効果的にバイアスすることができることがわかった。
論文 参考訳(メタデータ) (2024-11-10T22:00:55Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
分子グラフ構造アンダーラインCo設計のための機械学習ベースの生成フレームワークであるMollCodeを提案する。
MolCodeでは、3D幾何情報によって分子2Dグラフの生成が促進され、それによって分子3D構造の予測が導かれる。
分子設計における2次元トポロジーと3次元幾何は本質的に相補的な情報を含んでいることが明らかとなった。
論文 参考訳(メタデータ) (2023-04-12T13:34:22Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGenは、分子生成に特化した事前訓練された分子言語モデルである。
1億以上の分子SELFIESを再構成することで構造的および文法的な洞察を内部化する。
我々の化学フィードバックパラダイムは、モデルを分子幻覚から遠ざけ、モデルの推定確率と実世界の化学的嗜好との整合性を確保する。
論文 参考訳(メタデータ) (2023-01-26T17:52:56Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
分子のトポロジカルデータ解析(TDA)表現を付加したSMILES変分自動エンコーダ(VAE)を提案する。
実験の結果, このTDA拡張により, SMILES VAEは3次元幾何学と電子特性の複雑な関係を捉えることができることがわかった。
論文 参考訳(メタデータ) (2021-06-08T15:49:21Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
我々は小データ構造における変分推論とグラフ理論に基づく分子生成モデルを開発する。
モデルの性能は、所望の目的特性を持つ分子を生成することによって評価される。
論文 参考訳(メタデータ) (2020-09-29T09:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。