論文の概要: Cross Domain Few-Shot Learning via Meta Adversarial Training
- arxiv url: http://arxiv.org/abs/2202.05713v1
- Date: Fri, 11 Feb 2022 15:52:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-14 14:21:01.540323
- Title: Cross Domain Few-Shot Learning via Meta Adversarial Training
- Title(参考訳): メタ・アドバイザリ・トレーニングによるクロスドメイン・ファウショット学習
- Authors: Jirui Qi, Richong Zhang, Chune Li, Yongyi Mao
- Abstract要約: Few-shot Relation Classification (RC) は機械学習における重要な問題の1つである。
先述のクロスドメイン状況を考慮した新しいモデルを提案する。
対象領域のデータに適応する訓練ネットワークを微調整するために,メタベース対逆トレーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 34.383449283927014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot relation classification (RC) is one of the critical problems in
machine learning. Current research merely focuses on the set-ups that both
training and testing are from the same domain. However, in practice, this
assumption is not always guaranteed. In this study, we present a novel model
that takes into consideration the afore-mentioned cross-domain situation. Not
like previous models, we only use the source domain data to train the
prototypical networks and test the model on target domain data. A meta-based
adversarial training framework (\textbf{MBATF}) is proposed to fine-tune the
trained networks for adapting to data from the target domain. Empirical studies
confirm the effectiveness of the proposed model.
- Abstract(参考訳): Few-shot Relation Classification (RC) は機械学習における重要な問題の1つである。
現在の研究は、トレーニングとテストの両方が同じドメインからのものであるという設定にのみ焦点を合わせています。
しかし実際には、この仮定は必ずしも保証されない。
本研究では,先述のクロスドメイン状況を考慮した新しいモデルを提案する。
以前のモデルとは異なり、私たちはソースドメインデータのみを使用してプロトタイプネットワークをトレーニングし、ターゲットドメインデータでモデルをテストします。
対象領域のデータに適応するためのトレーニングネットワークを微調整するために,メタベースの逆トレーニングフレームワーク(\textbf{MBATF})を提案する。
実験により,提案モデルの有効性を確認した。
関連論文リスト
- Quality > Quantity: Synthetic Corpora from Foundation Models for
Closed-Domain Extractive Question Answering [35.38140071573828]
閉領域内での抽出的質問応答について検討し,対象とする事前学習の概念を紹介する。
提案フレームワークはGalacticaを用いて,特定の書体スタイルやトピックに合わせて合成された「ターゲット」コーパスを生成する。
論文 参考訳(メタデータ) (2023-10-25T20:48:16Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
本稿では、モデルがトレーニングされたドメインと異なる新しいドメインに適用されたときに発生するドメインシフトに焦点を当てる。
ドメイン固有モデルを学習するためのD$3$Gという新しい手法を提案する。
以上の結果から,D$3$Gは最先端の手法より一貫して優れていた。
論文 参考訳(メタデータ) (2023-02-06T08:11:16Z) - GAN-based Domain Inference Attack [3.731168012111833]
本稿では,GAN(Generative Adversarial Network)に基づく,対象モデルの潜在的ないし類似した領域を探索する手法を提案する。
ドメインがターゲットドメインとより類似している場合、ターゲットモデルがトレーニング手順の邪魔をしなくなる可能性がある。
実験の結果,MDIトップランクドメインからの補助データセットは,モデル反転攻撃の結果を効果的に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-12-22T15:40:53Z) - Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from
Mixture-of-Experts [33.21435044949033]
既存のほとんどのメソッドは、単一のモデルを使って複数のソースドメインでトレーニングを行います。
本稿では,知識蒸留プロセスとして定式化された非教師なし試験時間適応のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-08T02:28:10Z) - One-Class Knowledge Distillation for Face Presentation Attack Detection [53.30584138746973]
本稿では,一級ドメイン適応による対面PADのクロスドメイン性能向上のための教師学生フレームワークを提案する。
学生ネットワークは、教師ネットワークを模倣し、ターゲットドメインの真の顔サンプルの類似した表現を学ぶために訓練される。
テストフェーズでは、教師と学生ネットワークの表現の類似度スコアを用いて、真の攻撃と区別する。
論文 参考訳(メタデータ) (2022-05-08T06:20:59Z) - Towards Online Domain Adaptive Object Detection [79.89082006155135]
既存のオブジェクト検出モデルは、トレーニングデータとテストデータの両方が同じソースドメインからサンプリングされていると仮定します。
オンライン設定における対象領域の一般化を適応・改善する新しい統合適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-11T17:47:22Z) - Meta-FDMixup: Cross-Domain Few-Shot Learning Guided by Labeled Target
Data [95.47859525676246]
最近の研究では、ソースドメインで訓練された既存の数発の学習手法が、ドメインギャップが観測されると、新しいターゲットドメインに一般化できないことが判明している。
本稿では,クロスドメインFew-Shot Learningにおけるラベル付き目標データが,学習プロセスを支援するために利用されていないことに気付いた。
論文 参考訳(メタデータ) (2021-07-26T06:15:45Z) - Source-Free Open Compound Domain Adaptation in Semantic Segmentation [99.82890571842603]
SF-OCDAでは、ターゲットモデルを学習するために、ソース事前訓練されたモデルとターゲットデータのみが利用可能である。
そこで我々は,Cross-Patch Style Swap (CPSS)を提案する。
提案手法は,C-Drivingデータセット上で最先端の結果を生成する。
論文 参考訳(メタデータ) (2021-06-07T08:38:41Z) - Distill and Fine-tune: Effective Adaptation from a Black-box Source
Model [138.12678159620248]
Unsupervised Domain Adapt (UDA) は、既存のラベル付きデータセット (source) の知識を新しいラベル付きデータセット (target) に転送することを目的としています。
Distill and Fine-tune (Dis-tune) という新しい二段階適応フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-04T05:29:05Z) - A Brief Review of Domain Adaptation [1.2043574473965317]
本稿では、ラベルがソースドメインでのみ利用可能となる、教師なしドメイン適応に焦点を当てる。
ドメイン適応問題に対処することを目的とした、浅層および深層ドメイン適応アプローチが成功している。
論文 参考訳(メタデータ) (2020-10-07T07:05:32Z) - Test-time Unsupervised Domain Adaptation [3.4188171733930584]
畳み込みニューラルネットワークは、しばしば異なるスキャナや取得プロトコル(ターゲットドメイン)に一般化する。
対象領域から特定の対象領域に適応したモデルは、対象領域のより多くのデータを見たが、対象領域の特定の対象領域に適応していないドメイン適応法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-05T11:30:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。