Neural-Network Decoders for Quantum Error Correction using Surface
Codes:A Space Exploration of the Hardware Cost-Performance Trade-Offs
- URL: http://arxiv.org/abs/2202.05741v1
- Date: Fri, 11 Feb 2022 16:27:14 GMT
- Title: Neural-Network Decoders for Quantum Error Correction using Surface
Codes:A Space Exploration of the Hardware Cost-Performance Trade-Offs
- Authors: Ramon Overwater, Masoud Babaie, Fabio Sebastiano
- Abstract summary: This work presents a space exploration of fully-connected feed-forward NN decoders for small distance surface codes.
The goal is to optimize the neural network for high decoding performance, while keeping a minimalistic hardware implementation.
We demonstrate that hardware based NN-decoders can achieve high decoding performance comparable to other state-of-the-art decoding algorithms.
- Score: 0.07734726150561086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Error Correction (QEC) is required in quantum computers to mitigate
the effect of errors on physical qubits. When adopting a QEC scheme based on
surface codes, error decoding is the most computationally expensive task in the
classical electronic back-end. Decoders employing neural networks (NN) are
well-suited for this task but their hardware implementation has not been
presented yet. This work presents a space exploration of fully-connected
feed-forward NN decoders for small distance surface codes. The goal is to
optimize the neural network for high decoding performance, while keeping a
minimalistic hardware implementation. This is needed to meet the tight delay
constraints of real-time surface code decoding. We demonstrate that hardware
based NN-decoders can achieve high decoding performance comparable to other
state-of-the-art decoding algorithms whilst being well below the tight delay
requirements $(\approx 440\ \mathrm{ns})$ of current solid-state qubit
technologies for both ASIC designs $(<30\ \mathrm{ns})$ and FPGA
implementations $(<90\ \mathrm{ns})$. These results designates NN-decoders as
fitting candidates for an integrated hardware implementation in future
large-scale quantum computers.
Related papers
- A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction [0.0]
We design and analyze a neural decoder based on an in-memory crossbar (IMC) architecture.
We develop hardware-aware re-training methods to mitigate the fidelity loss.
This work provides a pathway to scalable, fast, and low-power cryogenic IMC hardware for integrated fault-tolerant QEC.
arXiv Detail & Related papers (2023-07-18T17:46:33Z) - A Scalable, Fast and Programmable Neural Decoder for Fault-Tolerant
Quantum Computation Using Surface Codes [12.687083899824314]
Quantum error-correcting codes (QECCs) can eliminate the negative effects of quantum noise, the major obstacle to the execution of quantum algorithms.
We propose a scalable, fast, and programmable neural decoding system to meet the requirements of FTQEC for rotated surface codes (RSC)
Our system achieves an extremely low decoding latency of 197 ns, and the accuracy results of our system are close to minimum weight perfect matching (MWPM)
arXiv Detail & Related papers (2023-05-25T06:23:32Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - NEO-QEC: Neural Network Enhanced Online Superconducting Decoder for
Surface Codes [2.2749157557381245]
We propose an NN-based accurate, fast, and low-power decoder capable of decoding SCs and lattice surgery (LS) operations with measurement errors on ancillary qubits.
We evaluate the decoder performance by a quantum error simulator for the single logical qubit protection and the minimum operation of LS with code up to 13.
arXiv Detail & Related papers (2022-08-11T11:37:09Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - A scalable and fast artificial neural network syndrome decoder for
surface codes [0.8078491757252693]
We develop a scalable and fast syndrome decoder capable of decoding surface codes of arbitrary shape and size with data qubits suffering from the depolarizing error model.
Based on rigorous training over 50 million random quantum error instances, our ANN decoder is shown to work with code distances exceeding 1000.
arXiv Detail & Related papers (2021-10-12T09:41:09Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - NISQ+: Boosting quantum computing power by approximating quantum error
correction [6.638758213186185]
We design a method to boost the computational power of near-term quantum computers.
By approximating fully-fledged error correction mechanisms, we can increase the compute volume.
We demonstrate a proof-of-concept that approximate error decoding can be accomplished online in near-term quantum systems.
arXiv Detail & Related papers (2020-04-09T20:17:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.