Motion Correction and Volumetric Reconstruction for Fetal Functional
Magnetic Resonance Imaging Data
- URL: http://arxiv.org/abs/2202.05863v1
- Date: Fri, 11 Feb 2022 19:11:16 GMT
- Title: Motion Correction and Volumetric Reconstruction for Fetal Functional
Magnetic Resonance Imaging Data
- Authors: Daniel Sobotka, Michael Ebner, Ernst Schwartz, Karl-Heinz Nenning,
Athena Taymourtash, Tom Vercauteren, Sebastien Ourselin, Gregor Kasprian,
Daniela Prayer, Georg Langs, Roxane Licandro
- Abstract summary: Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain.
Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint.
We propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction.
- Score: 3.690756997172894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion correction is an essential preprocessing step in functional Magnetic
Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts
caused by fetal movement and maternal breathing and consequently to suppress
erroneous signal correlations. Current motion correction approaches for fetal
fMRI choose a single 3D volume from a specific acquisition timepoint with least
motion artefacts as reference volume, and perform interpolation for the
reconstruction of the motion corrected time series. The results can suffer, if
no low-motion frame is available, and if reconstruction does not exploit any
assumptions about the continuity of the fMRI signal. Here, we propose a novel
framework, which estimates a high-resolution reference volume by using
outlier-robust motion correction, and by utilizing Huber L2 regularization for
intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI.
We performed an extensive parameter study to investigate the effectiveness of
motion estimation and present in this work benchmark metrics to quantify the
effect of motion correction and regularised volumetric reconstruction
approaches on functional connectivity computations. We demonstrate the proposed
framework's ability to improve functional connectivity estimates,
reproducibility and signal interpretability, which is clinically highly
desirable for the establishment of prognostic noninvasive imaging biomarkers.
The motion correction and volumetric reconstruction framework is made available
as an open-source package of NiftyMIC.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - HAITCH: A Framework for Distortion and Motion Correction in Fetal Multi-Shell Diffusion-Weighted MRI [5.393543723150301]
This work presents HAITCH, the first and the only publicly available tool to correct and reconstruct multi-shell high-angular resolution fetal dMRI data.
HaITCH offers several technical advances that include a blip-reversed dual-echo acquisition for dynamic distortion correction.
HaITCH successfully removes artifacts and reconstructs high-fidelity fetal dMRI data suitable for advanced diffusion modeling.
arXiv Detail & Related papers (2024-06-28T16:40:57Z) - Attention-aware non-rigid image registration for accelerated MR imaging [10.47044784972188]
We introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI.
We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels.
We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories.
arXiv Detail & Related papers (2024-04-26T14:25:07Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - AFFIRM: Affinity Fusion-based Framework for Iteratively Random Motion
correction of multi-slice fetal brain MRI [8.087220876070477]
We present a novel Affinity Fusion-based Framework for Iteratively Random Motion correction of the multi-slice fetal brain MRI.
It learns the sequential motion from multiple stacks of slices and integrates the features between 2D slices and reconstructed 3D volume using affinity fusion.
The method accurately estimates the motion regardless of brain orientations and outperforms other state-of-the-art learning-based methods on the simulated motion-corrupted data.
arXiv Detail & Related papers (2022-05-12T02:54:55Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - 4D iterative reconstruction of brain fMRI in the moving fetus [1.8492120771993543]
The accuracy of the proposed method was quantitatively evaluated on a group of real clinical fMRI fetuses.
The results indicate improvements of reconstruction quality compared to the conventional 3D approach.
arXiv Detail & Related papers (2021-11-22T18:12:21Z) - Inertial Measurements for Motion Compensation in Weight-bearing
Cone-beam CT of the Knee [6.7461735822055715]
Involuntary motion during CT scans of the knee causes artifacts in the reconstructed volumes making them unusable for clinical diagnosis.
We propose to attach an inertial measurement unit (IMU) to the leg of the subject in order to measure the motion during the scan and correct for it.
arXiv Detail & Related papers (2020-07-09T09:26:27Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
We propose Motion Pyramid Networks, a novel deep learning-based approach for accurate and efficient cardiac motion estimation.
We predict and fuse a pyramid of motion fields from multiple scales of feature representations to generate a more refined motion field.
We then use a novel cyclic teacher-student training strategy to make the inference end-to-end and further improve the tracking performance.
arXiv Detail & Related papers (2020-06-28T21:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.