論文の概要: Feature Construction and Selection for PV Solar Power Modeling
- arxiv url: http://arxiv.org/abs/2202.06226v1
- Date: Sun, 13 Feb 2022 06:49:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-15 18:21:52.597243
- Title: Feature Construction and Selection for PV Solar Power Modeling
- Title(参考訳): 太陽光発電モデリングのための機能構築と選択
- Authors: Yu Yang, Jia Mao, Richard Nguyen, Annas Tohmeh, Hen-Geul Yeh
- Abstract要約: 太陽光発電(PV)発電を予測するモデルを構築することで、意思決定者はエネルギー不足を補うことができる。
太陽エネルギーの出力は、光や天気など多くの要因に依存する時系列データである。
本研究では, 過去のデータをもとに, 1時間先進太陽エネルギー予測のための機械学習フレームワークを開発した。
- 参考スコア(独自算出の注目度): 1.8960797847221296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using solar power in the process industry can reduce greenhouse gas emissions
and make the production process more sustainable. However, the intermittent
nature of solar power renders its usage challenging. Building a model to
predict photovoltaic (PV) power generation allows decision-makers to hedge
energy shortages and further design proper operations. The solar power output
is time-series data dependent on many factors, such as irradiance and weather.
A machine learning framework for 1-hour ahead solar power prediction is
developed in this paper based on the historical data. Our method extends the
input dataset into higher dimensional Chebyshev polynomial space. Then, a
feature selection scheme is developed with constrained linear regression to
construct the predictor for different weather types. Several tests show that
the proposed approach yields lower mean squared error than classical machine
learning methods, such as support vector machine (SVM), random forest (RF), and
gradient boosting decision tree (GBDT).
- Abstract(参考訳): プロセス産業における太陽光発電の利用は、温室効果ガス排出量を削減し、製造プロセスをより持続可能にする。
しかし、太陽エネルギーの断続的な性質は、その利用を困難にしている。
太陽光発電(pv)発電を予測するモデルを構築することで、意思決定者はエネルギー不足を回避し、さらに適切な運用を設計できる。
太陽エネルギーの出力は、照度や天気など多くの要因に依存する時系列データである。
本研究では, 過去のデータをもとに, 1時間先進太陽エネルギー予測のための機械学習フレームワークを開発した。
提案手法は入力データセットを高次元チェビシェフ多項式空間に拡張する。
そして、制約付き線形回帰を用いて特徴選択スキームを開発し、異なる気象種類の予測器を構築する。
提案手法は,サポートベクトルマシン (SVM) やランダムフォレスト (RF) ,勾配向上決定木 (GBDT) など,従来の機械学習手法よりも平均2乗誤差が低いことを示す。
関連論文リスト
- Solarcast-ML: Per Node GraphCast Extension for Solar Energy Production [0.0]
このプロジェクトは、太陽エネルギー生産予測機能を統合することで、グローバル気象予報のための最先端グラフニューラルネットワーク(GNN)であるGraphCastモデルの拡張を示す。
提案手法は、GraphCastが生成した天気予報を利用して、ニューラルネットワークモデルを用いて、様々な気象条件に基づいて実際の太陽出力と潜在的な太陽出力の比率を予測する。
その結果, 太陽放射の正確な予測, 収束挙動, トレーニング損失の低減, および太陽放射パターンの正確な予測において, モデルの有効性が示された。
論文 参考訳(メタデータ) (2024-06-19T13:47:05Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
我々は、新しいデータプロダクトの予測可能性を評価するために、一連の機械学習戦略を用いて、事後SEPイベントの予測を行う。
データ量の増大にもかかわらず、予測精度は 0.7 + 0.1 に達し、これはこれらのベンチマークに合致するが、公表されたベンチマークを超えない。
論文 参考訳(メタデータ) (2024-03-04T23:12:17Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Solar Power Prediction Using Machine Learning [0.0]
本稿では,99%のAUC測定値を用いて,高精度な太陽光発電予測手法を提案する。
このアプローチには、データ収集、前処理、機能選択、モデル選択、トレーニング、評価、デプロイメントが含まれる。
訓練された機械学習モデルは生産環境にデプロイされ、ソーラー発電に関するリアルタイム予測に使用することができる。
論文 参考訳(メタデータ) (2023-03-11T06:31:46Z) - Data-driven soiling detection in PV modules [58.6906336996604]
太陽光発電モジュールの土質比を推定する問題について検討した。
私たちのアルゴリズムの重要な利点は、ラベル付きデータでトレーニングする必要がない、土壌を推定することです。
実験により, 土質比を推定するための工法として, 現状を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-01-30T14:35:47Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
特定の地理的位置に対して太陽光発電(PV)発電量を推定することが重要である。
本稿では,太陽PV発電における気象パラメータの影響を,Bagging,Boosting,Stacking,VottingなどのEnsemble ML(EML)モデルを用いて推定する。
その結果,スタックモデルと投票モデルでは,約96%の予測精度が得られた。
論文 参考訳(メタデータ) (2023-01-21T19:16:03Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
我々は、自己教師付き学習を用いた多スペクトル衛星データから、太陽流の一般的なモデルを構築した。
我々のモデルは、衛星観測に基づいて、位置の将来の太陽放射を推定する。
提案手法は,25の太陽観測地点にまたがる異なる範囲で評価し,地平線を予測できる。
論文 参考訳(メタデータ) (2021-12-28T03:13:44Z) - Deep generative modeling for probabilistic forecasting in power systems [34.70329820717658]
本研究では,近年のディープラーニング技術である正規化フローを用いて,正確な確率予測を行う。
我々の方法論は他の最先端のディープラーニング生成モデルと競合していることを示す。
論文 参考訳(メタデータ) (2021-06-17T10:41:57Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
機械学習技術の強みを利用した日次太陽エネルギー予測について報告する。
線形, 尾根, ラッソ, 決定木, ランダム森林, 人工ニューラルネットワークなどのベースライン回帰器の予測モデルを実装した。
改良された精度は,2つのグリッドサイズでランダム森林と尾根回帰器によって達成されている。
論文 参考訳(メタデータ) (2020-10-25T17:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。