論文の概要: Hierarchical Point Cloud Encoding and Decoding with Lightweight
Self-Attention based Model
- arxiv url: http://arxiv.org/abs/2202.06407v1
- Date: Sun, 13 Feb 2022 21:10:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-15 17:23:58.085151
- Title: Hierarchical Point Cloud Encoding and Decoding with Lightweight
Self-Attention based Model
- Title(参考訳): 軽量セルフアテンションモデルによる階層的ポイントクラウド符号化と復号
- Authors: En Yen Puang, Hao Zhang, Hongyuan Zhu, Wei Jing
- Abstract要約: SA-CNNは、ポイントクラウドデータの表現学習のための自己アテンションベースのエンコーディングおよびデコードアーキテクチャである。
SA-CNNは, 分類, 部分分割, 再構成, 形状検索, 教師なし分類など, 幅広い応用が可能であることを実証する。
- 参考スコア(独自算出の注目度): 22.338247335791095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present SA-CNN, a hierarchical and lightweight
self-attention based encoding and decoding architecture for representation
learning of point cloud data. The proposed SA-CNN introduces convolution and
transposed convolution stacks to capture and generate contextual information
among unordered 3D points. Following conventional hierarchical pipeline, the
encoding process extracts feature in local-to-global manner, while the decoding
process generates feature and point cloud in coarse-to-fine, multi-resolution
stages. We demonstrate that SA-CNN is capable of a wide range of applications,
namely classification, part segmentation, reconstruction, shape retrieval, and
unsupervised classification. While achieving the state-of-the-art or comparable
performance in the benchmarks, SA-CNN maintains its model complexity several
order of magnitude lower than the others. In term of qualitative results, we
visualize the multi-stage point cloud reconstructions and latent walks on rigid
objects as well as deformable non-rigid human and robot models.
- Abstract(参考訳): 本稿では,ポイントクラウドデータの表現学習のための,階層的かつ軽量な自己アテンションに基づく符号化と復号化アーキテクチャであるSA-CNNを提案する。
提案するSA-CNNは,無秩序な3次元点間のコンテキスト情報を捕捉・生成するための畳み込みと転置畳み込みスタックを導入している。
従来の階層的パイプラインに従って、エンコーディングプロセスは局所的からグローバル的な方法で特徴を抽出し、デコーディングプロセスは粗く細分化されたマルチレゾリューションの段階において特徴と点クラウドを生成する。
SA-CNNは, 分類, 部分分割, 再構成, 形状検索, 教師なし分類など, 幅広い応用が可能であることを実証する。
ベンチマークで最先端または同等のパフォーマンスを達成する一方で、SA-CNNはそのモデルの複雑さを他のものよりも数桁低く保っている。
定性的な結果の観点では,多段点雲の再構築や剛性物体の潜在歩行,変形可能な非剛性人間・ロボットモデルなどを可視化する。
関連論文リスト
- SENetV2: Aggregated dense layer for channelwise and global
representations [0.0]
我々は,Squeeze残余モジュール内に,多分岐密度層である新しい多層パーセプトロンを導入する。
この融合により、チャネルワイドパターンを捕捉し、グローバルな知識を持つネットワークの能力が向上する。
ベンチマークデータセットの広範な実験を行い、モデルを検証し、確立したアーキテクチャと比較する。
論文 参考訳(メタデータ) (2023-11-17T14:10:57Z) - Low-Resolution Self-Attention for Semantic Segmentation [96.81482872022237]
我々は,グローバルコンテキストを計算コストの大幅な削減で捉えるために,低解像度自己認識(LRSA)機構を導入する。
我々のアプローチは、入力画像の解像度に関わらず、固定された低解像度空間における自己注意を計算することである。
本稿では,エンコーダ・デコーダ構造を持つビジョントランスであるLRFormerを構築することで,LRSA手法の有効性を示す。
論文 参考訳(メタデータ) (2023-10-08T06:10:09Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
生成的視点から深層離散表現を学習する。
我々は,コードワード列上の離散分布を付与し,コードワード列上の分布をデータ分布に伝達する決定論的デコーダを学習する。
WS 距離のクラスタリングの観点と結びつけて,より優れた,より制御可能なクラスタリングソリューションを実現するための,さらなる理論を開発しています。
論文 参考訳(メタデータ) (2023-02-12T13:51:36Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
セグメンテーションネットワークによって抽出されたマルチスケール特徴の識別能力を高めるために,コントラスト学習を適用した。
まず、エンコーダのマルチスケール表現を共通の特徴空間にマッピングすることにより、教師付き局所言語制約の新しい形式をインスタンス化する。
論文 参考訳(メタデータ) (2022-03-25T01:24:24Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
我々は、畳み込み動的アライメントネットワーク(CoDA Nets)と呼ばれる新しいニューラルネットワークモデルを紹介する。
彼らの中核となるビルディングブロックは動的アライメントユニット(DAU)であり、タスク関連パターンに合わせて動的に計算された重みベクトルで入力を変換するように最適化されている。
CoDAネットは一連の入力依存線形変換を通じて分類予測をモデル化し、出力を個々の入力コントリビューションに線形分解することができる。
論文 参考訳(メタデータ) (2021-09-27T12:39:46Z) - Latent Code-Based Fusion: A Volterra Neural Network Approach [21.25021807184103]
最近導入されたVolterra Neural Networks(VNN)を用いた深層構造エンコーダを提案する。
提案手法は,cnnベースのオートエンコーダに対して,より頑健な分類性能を持つサンプル複雑性を示す。
論文 参考訳(メタデータ) (2021-04-10T18:29:01Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
画像生成装置(デコーダ)を構築するための新しいニューラルネットワークを導入し、可変オートエンコーダ(VAE)に適用する。
空間依存ネットワーク(sdns)では、ディープニューラルネットの各レベルにおける特徴マップを空間的にコヒーレントな方法で計算する。
空間依存層による階層型vaeのデコーダの強化は密度推定を大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-03-16T07:01:08Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
一般的な戦略の1つは、バックボーンネットワークに拡張畳み込みを採用し、高解像度のフィーチャーマップを抽出することです。
本稿では,高分解能なセマンティクスリッチな特徴マップを得るために紹介される,新たなホリスティック誘導デコーダを提案する。
論文 参考訳(メタデータ) (2020-12-18T10:51:49Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
デジタル病理画像セグメンテーションタスクにおいて、ディープニューラルネットワークと高い競争力を持つ、容易に訓練されながら強力な表現学習手法を提案する。
ScD2TEと略すこの手法はスパースコーディング駆動の深層決定木アンサンブルと呼ばれ、表現学習の新しい視点を提供する。
論文 参考訳(メタデータ) (2020-08-13T02:59:31Z) - Structural Deep Clustering Network [45.370272344031285]
本研究では,構造情報を深層クラスタリングに統合する構造深層クラスタリングネットワーク(SDCN)を提案する。
具体的には、オートエンコーダが学習した表現を対応するGCN層に転送するデリバリ演算子を設計する。
このように、低次から高次までの複数のデータ構造は、オートエンコーダによって学習された複数の表現と自然に結合される。
論文 参考訳(メタデータ) (2020-02-05T04:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。