Faster hyperspectral image classification based on selective kernel
mechanism using deep convolutional networks
- URL: http://arxiv.org/abs/2202.06458v1
- Date: Mon, 14 Feb 2022 02:14:50 GMT
- Title: Faster hyperspectral image classification based on selective kernel
mechanism using deep convolutional networks
- Authors: Guandong Li, Chunju Zhang
- Abstract summary: This letter designed the Faster selective kernel mechanism network (FSKNet), FSKNet can balance this problem.
It designs 3D-CNN and 2D-CNN conversion modules, using 3D-CNN to complete feature extraction while reducing the dimensionality of spatial and spectrum.
FSKNet achieves high accuracy on the IN, UP, Salinas, and Botswana data sets with very small parameters.
- Score: 18.644268589334217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral imagery is rich in spatial and spectral information. Using
3D-CNN can simultaneously acquire features of spatial and spectral dimensions
to facilitate classification of features, but hyperspectral image information
spectral dimensional information redundancy. The use of continuous 3D-CNN will
result in a high amount of parameters, and the computational power requirements
of the device are high, and the training takes too long. This letter designed
the Faster selective kernel mechanism network (FSKNet), FSKNet can balance this
problem. It designs 3D-CNN and 2D-CNN conversion modules, using 3D-CNN to
complete feature extraction while reducing the dimensionality of spatial and
spectrum. However, such a model is not lightweight enough. In the converted
2D-CNN, a selective kernel mechanism is proposed, which allows each neuron to
adjust the receptive field size based on the two-way input information scale.
Under the Selective kernel mechanism, it mainly includes two components, se
module and variable convolution. Se acquires channel dimensional attention and
variable convolution to obtain spatial dimension deformation information of
ground objects. The model is more accurate, faster, and less computationally
intensive. FSKNet achieves high accuracy on the IN, UP, Salinas, and Botswana
data sets with very small parameters.
Related papers
- NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs.
We identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Imbalance in the 3D convolution across different depth levels.
We devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2
arXiv Detail & Related papers (2023-09-26T02:09:52Z) - Spatial-Spectral Hyperspectral Classification based on Learnable 3D
Group Convolution [18.644268589334217]
This paper proposes a learnable group convolution network (LGCNet) based on an improved 3D-DenseNet model and a lightweight model design.
The LGCNet module improves the shortcomings of group convolution by introducing a dynamic learning method for the input channels and convolution kernel grouping.
LGCNet has achieved progress in inference speed and accuracy, and outperforms mainstream hyperspectral image classification methods on the Indian Pines, Pavia University, and KSC datasets.
arXiv Detail & Related papers (2023-07-15T05:47:12Z) - DGCNet: An Efficient 3D-Densenet based on Dynamic Group Convolution for
Hyperspectral Remote Sensing Image Classification [22.025733502296035]
We introduce a lightweight model based on the improved 3D-Densenet model and designs DGCNet.
Multiple groups can capture different and complementary visual and semantic features of input images, allowing convolution neural network(CNN) to learn rich features.
The inference speed and accuracy have been improved, with outstanding performance on the IN, Pavia and KSC datasets.
arXiv Detail & Related papers (2023-07-13T10:19:48Z) - Spatial Pruned Sparse Convolution for Efficient 3D Object Detection [41.62839541489369]
3D scenes are dominated by a large number of background points, which is redundant for the detection task that mainly needs to focus on foreground objects.
In this paper, we analyze major components of existing 3D CNNs and find that 3D CNNs ignore the redundancy of data and further amplify it in the down-sampling process, which brings a huge amount of extra and unnecessary computational overhead.
We propose a new convolution operator named spatial pruned sparse convolution (SPS-Conv), which includes two variants, spatial pruned submanifold sparse convolution (SPSS-Conv) and spatial pruned regular sparse convolution (SPRS
arXiv Detail & Related papers (2022-09-28T16:19:06Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
arXiv Detail & Related papers (2022-09-13T12:12:19Z) - MNet: Rethinking 2D/3D Networks for Anisotropic Medical Image
Segmentation [13.432274819028505]
A novel mesh network (MNet) is proposed to balance the spatial representation inter axes via learning.
Comprehensive experiments are performed on four public datasets (CT&MR)
arXiv Detail & Related papers (2022-05-10T12:39:08Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
We present a recently developed method of adaptive machine learning for time-varying systems.
Our approach is to map very high (N>100k) dimensional inputs into the low dimensional (N2) latent space at the output of the encoder section of an encoder-decoder CNN.
This method allows us to learn correlations within and to track their evolution in real time based on feedback without interrupts.
arXiv Detail & Related papers (2021-07-13T16:05:28Z) - Hyperspectral Image Classification: Artifacts of Dimension Reduction on
Hybrid CNN [1.2875323263074796]
2D and 3D CNN models have proved highly efficient in exploiting the spatial and spectral information of Hyperspectral Images.
This work proposed a lightweight CNN (3D followed by 2D-CNN) model which significantly reduces the computational cost.
arXiv Detail & Related papers (2021-01-25T18:43:57Z) - Spatial Information Guided Convolution for Real-Time RGBD Semantic
Segmentation [79.78416804260668]
We propose Spatial information guided Convolution (S-Conv), which allows efficient RGB feature and 3D spatial information integration.
S-Conv is competent to infer the sampling offset of the convolution kernel guided by the 3D spatial information.
We further embed S-Conv into a semantic segmentation network, called Spatial information Guided convolutional Network (SGNet)
arXiv Detail & Related papers (2020-04-09T13:38:05Z) - Cylindrical Convolutional Networks for Joint Object Detection and
Viewpoint Estimation [76.21696417873311]
We introduce a learnable module, cylindrical convolutional networks (CCNs), that exploit cylindrical representation of a convolutional kernel defined in the 3D space.
CCNs extract a view-specific feature through a view-specific convolutional kernel to predict object category scores at each viewpoint.
Our experiments demonstrate the effectiveness of the cylindrical convolutional networks on joint object detection and viewpoint estimation.
arXiv Detail & Related papers (2020-03-25T10:24:58Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.