Splitting numerical integration for matrix completion
- URL: http://arxiv.org/abs/2202.06482v1
- Date: Mon, 14 Feb 2022 04:45:20 GMT
- Title: Splitting numerical integration for matrix completion
- Authors: Qianqian Song
- Abstract summary: We propose a new algorithm for low rank matrix approximation.
The algorithm is an adaptation of classical gradient descent within the framework of optimization.
Experimental results show that our approach has good scalability for large-scale problems.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Low rank matrix approximation is a popular topic in machine learning. In this
paper, we propose a new algorithm for this topic by minimizing the
least-squares estimation over the Riemannian manifold of fixed-rank matrices.
The algorithm is an adaptation of classical gradient descent within the
framework of optimization on manifolds. In particular, we reformulate an
unconstrained optimization problem on a low-rank manifold into a differential
dynamic system. We develop a splitting numerical integration method by applying
a splitting integration scheme to the dynamic system. We conduct the
convergence analysis of our splitting numerical integration algorithm. It can
be guaranteed that the error between the recovered matrix and true result is
monotonically decreasing in the Frobenius norm. Moreover, our splitting
numerical integration can be adapted into matrix completion scenarios.
Experimental results show that our approach has good scalability for
large-scale problems with satisfactory accuracy
Related papers
- The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering
In High Dimensions [32.30527731746912]
We propose a novel approximate filtering and smoothing method which propagates lowrank approximations of low-rank matrices.
Our method reduces computational complexity from cubic (for the Kalman filter) to emphquadratic in the state-space size in the worst-case.
arXiv Detail & Related papers (2023-06-13T13:50:31Z) - Low-complexity subspace-descent over symmetric positive definite
manifold [9.346050098365648]
We develop low-complexity algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold.
The proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix.
arXiv Detail & Related papers (2023-05-03T11:11:46Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Simplifying Momentum-based Positive-definite Submanifold Optimization
with Applications to Deep Learning [24.97120654216651]
We show how to solve difficult differential equations with momentum on a submanifold.
We do so by proposing a generalized version of the Riemannian normal coordinates.
We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free $2textnd$orders for deep learning with low precision by using only matrix multiplications.
arXiv Detail & Related papers (2023-02-20T03:31:11Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Nonlinear matrix recovery using optimization on the Grassmann manifold [18.655422834567577]
We investigate the problem of recovering a partially observed high-rank clustering matrix whose columns obey a nonlinear structure such as a union of subspaces.
We show that the alternating limit converges to a unique point using the Kurdyka-Lojasi property.
arXiv Detail & Related papers (2021-09-13T16:13:13Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Automatic differentiation for Riemannian optimization on low-rank matrix
and tensor-train manifolds [71.94111815357064]
In scientific computing and machine learning applications, matrices and more general multidimensional arrays (tensors) can often be approximated with the help of low-rank decompositions.
One of the popular tools for finding the low-rank approximations is to use the Riemannian optimization.
arXiv Detail & Related papers (2021-03-27T19:56:00Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.