Prototypical Contrast Adaptation for Domain Adaptive Semantic
Segmentation
- URL: http://arxiv.org/abs/2207.06654v1
- Date: Thu, 14 Jul 2022 04:54:26 GMT
- Title: Prototypical Contrast Adaptation for Domain Adaptive Semantic
Segmentation
- Authors: Zhengkai Jiang and Yuxi Li and Ceyuan Yang and Peng Gao and Yabiao
Wang and Ying Tai and Chengjie Wang
- Abstract summary: Prototypical Contrast Adaptation (ProCA) is a contrastive learning method for unsupervised domain adaptive semantic segmentation.
ProCA incorporates inter-class information into class-wise prototypes, and adopts the class-centered distribution alignment for adaptation.
- Score: 52.63046674453461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Domain Adaptation (UDA) aims to adapt the model trained on the
labeled source domain to an unlabeled target domain. In this paper, we present
Prototypical Contrast Adaptation (ProCA), a simple and efficient contrastive
learning method for unsupervised domain adaptive semantic segmentation.
Previous domain adaptation methods merely consider the alignment of the
intra-class representational distributions across various domains, while the
inter-class structural relationship is insufficiently explored, resulting in
the aligned representations on the target domain might not be as easily
discriminated as done on the source domain anymore. Instead, ProCA incorporates
inter-class information into class-wise prototypes, and adopts the
class-centered distribution alignment for adaptation. By considering the same
class prototypes as positives and other class prototypes as negatives to
achieve class-centered distribution alignment, ProCA achieves state-of-the-art
performance on classical domain adaptation tasks, {\em i.e., GTA5 $\to$
Cityscapes \text{and} SYNTHIA $\to$ Cityscapes}. Code is available at
\href{https://github.com/jiangzhengkai/ProCA}{ProCA}
Related papers
- Subtype-Aware Dynamic Unsupervised Domain Adaptation [36.996764621968204]
Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels.
We propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve performance in the target domain without the subtype label in both domains.
arXiv Detail & Related papers (2022-08-16T14:02:47Z) - Domain Adaptation via Prompt Learning [39.97105851723885]
Unsupervised domain adaption (UDA) aims to adapt models learned from a well-annotated source domain to a target domain.
We introduce a novel prompt learning paradigm for UDA, named Domain Adaptation via Prompt Learning (DAPL)
arXiv Detail & Related papers (2022-02-14T13:25:46Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - Prototypical Cross-domain Self-supervised Learning for Few-shot
Unsupervised Domain Adaptation [91.58443042554903]
We propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA)
PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains.
Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively.
arXiv Detail & Related papers (2021-03-31T02:07:42Z) - Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining
and Consistency [93.89773386634717]
Visual domain adaptation involves learning to classify images from a target visual domain using labels available in a different source domain.
We show that in the presence of a few target labels, simple techniques like self-supervision (via rotation prediction) and consistency regularization can be effective without any adversarial alignment to learn a good target classifier.
Our Pretraining and Consistency (PAC) approach, can achieve state of the art accuracy on this semi-supervised domain adaptation task, surpassing multiple adversarial domain alignment methods, across multiple datasets.
arXiv Detail & Related papers (2021-01-29T18:40:17Z) - Classes Matter: A Fine-grained Adversarial Approach to Cross-domain
Semantic Segmentation [95.10255219396109]
We propose a fine-grained adversarial learning strategy for class-level feature alignment.
We adopt a fine-grained domain discriminator that not only plays as a domain distinguisher, but also differentiates domains at class level.
An analysis with Class Center Distance (CCD) validates that our fine-grained adversarial strategy achieves better class-level alignment.
arXiv Detail & Related papers (2020-07-17T20:50:59Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.