論文の概要: Minimizing Entropy to Discover Good Solutions to Recurrent Mixed Integer
Programs
- arxiv url: http://arxiv.org/abs/2202.06736v1
- Date: Mon, 7 Feb 2022 18:52:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-20 17:17:01.418844
- Title: Minimizing Entropy to Discover Good Solutions to Recurrent Mixed Integer
Programs
- Title(参考訳): 再帰的混合整数プログラムのよい解を見つけるためのエントロピーの最小化
- Authors: Charly Robinson La Rocca, Emma Frejinger, Jean-Fran\c{c}ois Cordeau
- Abstract要約: 混合整数プログラミング(MIP)問題に対する現在の解法は、幅広い問題に対して良好に動作するように設計されている。
近年の研究では、機械学習(ML)をMIPソルバと統合してドメイン知識を注入し、最適性ギャップを効率的に閉じることが示されている。
本稿では、エントロピーの概念を用いて、最小限のトレーニングデータとチューニングで効率的にモデルを構築するオンラインソルバを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current state-of-the-art solvers for mixed-integer programming (MIP) problems
are designed to perform well on a wide range of problems. However, for many
real-world use cases, problem instances come from a narrow distribution. This
has motivated the development of specialized methods that can exploit the
information in historical datasets to guide the design of heuristics. Recent
works have shown that machine learning (ML) can be integrated with an MIP
solver to inject domain knowledge and efficiently close the optimality gap.
This hybridization is usually done with deep learning (DL), which requires a
large dataset and extensive hyperparameter tuning to perform well. This paper
proposes an online heuristic that uses the notion of entropy to efficiently
build a model with minimal training data and tuning. We test our method on the
locomotive assignment problem (LAP), a recurring real-world problem that is
challenging to solve at scale. Experimental results show a speed up of an order
of magnitude compared to a general purpose solver (CPLEX) with a relative gap
of less than 2%. We also observe that for some instances our method can
discover better solutions than CPLEX within the time limit.
- Abstract(参考訳): 混合整数プログラミング(MIP)問題に対する最先端の解法は,幅広い問題に対して良好に動作するように設計されている。
しかし、現実世界の多くのユースケースでは、問題インスタンスは狭い分布から来ている。
これは、履歴データセットの情報を利用してヒューリスティックスの設計を導くことができる専門的な手法の開発を動機付けた。
近年の研究では、機械学習(ML)をMIPソルバと統合してドメイン知識を注入し、最適性ギャップを効率的に閉じることが示されている。
このハイブリダイゼーションは通常、大きなデータセットと広範なハイパーパラメータチューニングを必要とするディープ・ラーニング(DL)によって行われる。
本稿では、エントロピーの概念を用いて、最小限のトレーニングデータとチューニングで効率的にモデルを構築するオンラインヒューリスティックを提案する。
本稿では,大規模に解決が困難な実世界の問題である機関車代入問題(LAP)について検討する。
実験の結果, 相対ギャップが2%未満の汎用解法 (CPLEX) と比較して, 桁違いのスピードアップが認められた。
また、いくつかのケースでは、我々のメソッドは時間制限内でCPLEXよりも優れた解を見つけることができる。
関連論文リスト
- Learning to Optimize for Mixed-Integer Non-linear Programming [20.469394148261838]
混合整数非NLPプログラム(MINLP)はエネルギーシステムや輸送など様々な領域で発生するが、解決は困難である。
機械学習の最近の進歩は、最適化のための学習として知られる領域において、顕著な成功をもたらしている。
勾配を保ちながら整数出力を生成する2つの異なる補正層を提案する。
論文 参考訳(メタデータ) (2024-10-14T20:14:39Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z) - Learning to Sparsify Travelling Salesman Problem Instances [0.5985204759362747]
プルーニングマシンラーニングを前処理のステップとして使用し、旅行セールスマンの問題をスパーシャライズするために正確なプログラミングアプローチを行います。
私たちの学習アプローチは、非常に少ないトレーニングデータを必要とし、数学的分析に適応可能です。
論文 参考訳(メタデータ) (2021-04-19T14:35:14Z) - Learning to Schedule Heuristics in Branch-and-Bound [25.79025327341732]
現実世界のアプリケーションは通常、迅速な意思決定を可能にするために、検索の早い段階で優れたソリューションを見つける必要があります。
正確なMIPソルバにおけるスケジューリングのための最初のデータ駆動フレームワークを提案する。
最先端の学術MIPソルバーのデフォルト設定と比較して、挑戦的なインスタンスのクラスで平均プライマリ積分を最大49%削減することができます。
論文 参考訳(メタデータ) (2021-03-18T14:49:52Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
本稿では,オンライン分散ロバスト最適化(DRO)のクラスを解決するための実用的なオンライン手法を提案する。
本研究は,ネットワークの堅牢性向上のための機械学習における重要な応用を実証する。
論文 参考訳(メタデータ) (2020-06-17T20:19:25Z) - Physarum Powered Differentiable Linear Programming Layers and
Applications [48.77235931652611]
一般線形プログラミング問題に対する効率的かつ微分可能な解法を提案する。
本稿では,ビデオセグメンテーションタスクとメタラーニングにおける問題解決手法について述べる。
論文 参考訳(メタデータ) (2020-04-30T01:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。