Concealing Sensitive Samples against Gradient Leakage in Federated
Learning
- URL: http://arxiv.org/abs/2209.05724v2
- Date: Thu, 14 Dec 2023 15:42:20 GMT
- Title: Concealing Sensitive Samples against Gradient Leakage in Federated
Learning
- Authors: Jing Wu, Munawar Hayat, Mingyi Zhou, Mehrtash Harandi
- Abstract summary: Federated Learning (FL) is a distributed learning paradigm that enhances users privacy by eliminating the need for clients to share raw, private data with the server.
Recent studies expose the vulnerability of FL to model inversion attacks, where adversaries reconstruct users private data via eavesdropping on the shared gradient information.
We present a simple, yet effective defense strategy that obfuscates the gradients of the sensitive data with concealed samples.
- Score: 41.43099791763444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a distributed learning paradigm that enhances
users privacy by eliminating the need for clients to share raw, private data
with the server. Despite the success, recent studies expose the vulnerability
of FL to model inversion attacks, where adversaries reconstruct users private
data via eavesdropping on the shared gradient information. We hypothesize that
a key factor in the success of such attacks is the low entanglement among
gradients per data within the batch during stochastic optimization. This
creates a vulnerability that an adversary can exploit to reconstruct the
sensitive data. Building upon this insight, we present a simple, yet effective
defense strategy that obfuscates the gradients of the sensitive data with
concealed samples. To achieve this, we propose synthesizing concealed samples
to mimic the sensitive data at the gradient level while ensuring their visual
dissimilarity from the actual sensitive data. Compared to the previous art, our
empirical evaluations suggest that the proposed technique provides the
strongest protection while simultaneously maintaining the FL performance.
Related papers
- Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
This paper introduces a novel framework focused on the strategic elimination of adversarial users within a federated model.
We detect anomalies in the aggregation phase of the Federated Algorithm, by integrating metadata gathered by the local training instances with Differential Privacy techniques.
Our experiments demonstrate the efficacy of our methods, significantly mitigating the risk of data poisoning while maintaining user privacy and model performance.
arXiv Detail & Related papers (2024-04-19T10:36:00Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Refiner: Data Refining against Gradient Leakage Attacks in Federated
Learning [28.76786159247595]
gradient leakage attacks exploit clients' uploaded gradients to reconstruct their sensitive data.
In this paper, we explore a novel defensive paradigm that departs from conventional gradient perturbation approaches.
We design Refiner that jointly optimize two metrics for privacy protection and performance maintenance.
arXiv Detail & Related papers (2022-12-05T05:36:15Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Defense Against Gradient Leakage Attacks via Learning to Obscure Data [48.67836599050032]
Federated learning is considered as an effective privacy-preserving learning mechanism.
In this paper, we propose a new defense method to protect the privacy of clients' data by learning to obscure data.
arXiv Detail & Related papers (2022-06-01T21:03:28Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Privacy-Preserving Federated Learning on Partitioned Attributes [6.661716208346423]
Federated learning empowers collaborative training without exposing local data or models.
We introduce an adversarial learning based procedure which tunes a local model to release privacy-preserving intermediate representations.
To alleviate the accuracy decline, we propose a defense method based on the forward-backward splitting algorithm.
arXiv Detail & Related papers (2021-04-29T14:49:14Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.