Privacy Attack in Federated Learning is Not Easy: An Experimental Study
- URL: http://arxiv.org/abs/2409.19301v1
- Date: Sat, 28 Sep 2024 10:06:34 GMT
- Title: Privacy Attack in Federated Learning is Not Easy: An Experimental Study
- Authors: Hangyu Zhu, Liyuan Huang, Zhenping Xie,
- Abstract summary: Federated learning (FL) is an emerging distributed machine learning paradigm proposed for privacy preservation.
Recent studies have indicated that FL cannot entirely guarantee privacy protection.
It remains uncertain whether privacy attack FL algorithms are effective in realistic federated environments.
- Score: 5.065947993017158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is an emerging distributed machine learning paradigm proposed for privacy preservation. Unlike traditional centralized learning approaches, FL enables multiple users to collaboratively train a shared global model without disclosing their own data, thereby significantly reducing the potential risk of privacy leakage. However, recent studies have indicated that FL cannot entirely guarantee privacy protection, and attackers may still be able to extract users' private data through the communicated model gradients. Although numerous privacy attack FL algorithms have been developed, most are designed to reconstruct private data from a single step of calculated gradients. It remains uncertain whether these methods are effective in realistic federated environments or if they have other limitations. In this paper, we aim to help researchers better understand and evaluate the effectiveness of privacy attacks on FL. We analyze and discuss recent research papers on this topic and conduct experiments in a real FL environment to compare the performance of various attack methods. Our experimental results reveal that none of the existing state-of-the-art privacy attack algorithms can effectively breach private client data in realistic FL settings, even in the absence of defense strategies. This suggests that privacy attacks in FL are more challenging than initially anticipated.
Related papers
- Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization [16.418338197742287]
Federated learning (FL) emerged as a paradigm designed to improve data privacy by enabling data to reside at its source.
Recent findings suggest that decentralized FL does not empirically offer any additional privacy or security benefits over centralized models.
We demonstrate that decentralized FL, when deploying distributed optimization, provides enhanced privacy protection.
arXiv Detail & Related papers (2024-07-12T15:01:09Z) - Federated Learning Privacy: Attacks, Defenses, Applications, and Policy Landscape - A Survey [27.859861825159342]
Deep learning has shown incredible potential across a vast array of tasks.
Recent concerns on privacy have further highlighted challenges for accessing such data.
Federated learning has emerged as an important privacy-preserving technology.
arXiv Detail & Related papers (2024-05-06T16:55:20Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Federated Learning with Reduced Information Leakage and Computation [17.069452700698047]
Federated learning (FL) is a distributed learning paradigm that allows multiple decentralized clients to collaboratively learn a common model without sharing local data.
This paper introduces Upcycled-FL, a strategy that applies first-order approximation at every even round of model update.
Under this strategy, half of the FL updates incur no information leakage and require much less computational and transmission costs.
arXiv Detail & Related papers (2023-10-10T06:22:06Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated learning (FL) is a distributed machine learning strategy that enables participants to collaborate and train a shared model without sharing their individual datasets.
Privacy and fairness are crucial considerations in FL.
This paper presents a framework that addresses the challenges of generating a fair global model without validation data and creating a globally private differential model.
arXiv Detail & Related papers (2023-05-23T09:58:48Z) - Federated Learning with Privacy-Preserving Ensemble Attention
Distillation [63.39442596910485]
Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized.
We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation.
Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage.
arXiv Detail & Related papers (2022-10-16T06:44:46Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
This paper empirically demonstrates that the clipped FedAvg can perform surprisingly well even with substantial data heterogeneity.
We provide the convergence analysis of a differential private (DP) FedAvg algorithm and highlight the relationship between clipping bias and the distribution of the clients' updates.
arXiv Detail & Related papers (2021-06-25T14:47:19Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.