Long-term Causal Inference Under Persistent Confounding via Data Combination
- URL: http://arxiv.org/abs/2202.07234v5
- Date: Sat, 31 Aug 2024 02:01:02 GMT
- Title: Long-term Causal Inference Under Persistent Confounding via Data Combination
- Authors: Guido Imbens, Nathan Kallus, Xiaojie Mao, Yuhao Wang,
- Abstract summary: We study the identification and estimation of long-term treatment effects when both experimental and observational data are available.
Since the long-term outcome is observed only after a long delay, it is not measured in the experimental data, but only recorded in the observational data.
- Score: 38.026740610259225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the identification and estimation of long-term treatment effects when both experimental and observational data are available. Since the long-term outcome is observed only after a long delay, it is not measured in the experimental data, but only recorded in the observational data. However, both types of data include observations of some short-term outcomes. In this paper, we uniquely tackle the challenge of persistent unmeasured confounders, i.e., some unmeasured confounders that can simultaneously affect the treatment, short-term outcomes and the long-term outcome, noting that they invalidate identification strategies in previous literature. To address this challenge, we exploit the sequential structure of multiple short-term outcomes, and develop three novel identification strategies for the average long-term treatment effect. We further propose three corresponding estimators and prove their asymptotic consistency and asymptotic normality. We finally apply our methods to estimate the effect of a job training program on long-term employment using semi-synthetic data. We numerically show that our proposals outperform existing methods that fail to handle persistent confounders.
Related papers
- Long-term Off-Policy Evaluation and Learning [21.047613223586794]
Short- and long-term outcomes of an algorithm often differ, with damaging downstream effects.
It takes months or even longer to observe the long-term outcomes of interest, making the algorithm selection process unacceptably slow.
We propose a new framework called Long-term Off-Policy Evaluation (LOPE), which is based on reward function decomposition.
arXiv Detail & Related papers (2024-04-24T06:59:59Z) - Estimating long-term causal effects from short-term experiments and
long-term observational data with unobserved confounding [5.854757988966379]
We study the identification and estimation of long-term treatment effects when both experimental and observational data are available.
Our long-term causal effect estimator is obtained by combining regression residuals with short-term experimental outcomes.
arXiv Detail & Related papers (2023-02-21T12:22:47Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - A Reinforcement Learning Approach to Estimating Long-term Treatment
Effects [13.371851720834918]
A limitation with randomized experiments is that they do not easily extend to measure long-term effects.
We take a reinforcement learning (RL) approach that estimates the average reward in a Markov process.
Motivated by real-world scenarios where the observed state transition is nonstationary, we develop a new algorithm for a class of nonstationary problems.
arXiv Detail & Related papers (2022-10-14T05:33:19Z) - Valid Inference After Causal Discovery [73.87055989355737]
We develop tools for valid post-causal-discovery inference.
We show that a naive combination of causal discovery and subsequent inference algorithms leads to highly inflated miscoverage rates.
arXiv Detail & Related papers (2022-08-11T17:40:45Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Estimating the Long-Term Effects of Novel Treatments [22.67249938461999]
Policy makers typically face the problem of wanting to estimate the long-term effects of novel treatments.
We propose a surrogate based approach where we assume that the long-term effect is channeled through a multitude of available short-term proxies.
arXiv Detail & Related papers (2021-03-15T13:56:48Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Long-Term Effect Estimation with Surrogate Representation [43.932546958874696]
This work studies the problem of long-term effect where the outcome of primary interest, or primary outcome, takes months or even years to accumulate.
We propose to build connections between long-term causal inference and sequential models in machine learning.
arXiv Detail & Related papers (2020-08-19T03:16:18Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.