Disturbance Enhanced Uncertainty Relations
- URL: http://arxiv.org/abs/2202.07251v1
- Date: Tue, 15 Feb 2022 08:37:24 GMT
- Title: Disturbance Enhanced Uncertainty Relations
- Authors: Liang-Liang Sun, Kishor Bharti, Ya-Li Mao, Xiang Zhou, Leong-Chuan
Kwek, Jingyun Fan, Sixia Yu
- Abstract summary: We show that disturbance of one measurement to a subsequent measurement sets lower-bounds to uncertainty.
The obtained relations, referred to as disturbance enhanced uncertainty relations, immediately find various applications in the field of quantum information.
We anticipate that this new twist on uncertainty principle may shed new light on quantum foundations and may also inspire further applications in the field of quantum information.
- Score: 2.075038010521211
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Uncertainty and disturbance are two most fundamental properties of a quantum
measurement and they are usually separately studied in terms of the preparation
and the measurement uncertainty relations. Here we shall establish an intimate
connection between them that goes beyond the above mentioned two kinds of
uncertainty relations. Our basic observation is that the disturbance of one
measurement to a subsequent measurement, which can be quantified based on
observed data, sets lower-bounds to uncertainty. This idea can be universally
applied to various measures of uncertainty and disturbance, with the help of
data processing inequality. The obtained relations, referred to as disturbance
enhanced uncertainty relations, immediately find various applications in the
field of quantum information. They ensure preparation uncertainty relation such
as novel entropic uncertainty relations independent of the Maassen and Uffink
relation. And they also result in a simple protocol to estimate coherence. We
anticipate that this new twist on uncertainty principle may shed new light on
quantum foundations and may also inspire further applications in the field of
quantum information.
Related papers
- Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness [106.52630978891054]
We present a taxonomy of uncertainty specific to vision-language AI systems.
We also introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error.
arXiv Detail & Related papers (2024-07-02T04:23:54Z) - Measurement incompatibility is strictly stronger than disturbance [44.99833362998488]
Heisenberg argued that measurements irreversibly alter the state of the system on which they are acting, causing an irreducible disturbance on subsequent measurements.
This article shows that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement disturbance.
However, we exhibit a toy theory, termed the minimal classical theory (MCT), that is a counterexample for the converse implication.
arXiv Detail & Related papers (2023-05-26T13:47:00Z) - Entropic Uncertainty for Biased Measurements [1.827510863075184]
We derive a new entropic uncertainty relation for certain quantum states and for instances where the two measurement bases are no longer mutually unbiased.
We show that our new bound can produce higher key-rates under several scenarios when compared with prior work using standard entropic uncertainty relations.
arXiv Detail & Related papers (2023-05-16T19:01:16Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
It is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions.
We prove that by tuning hyper parameters, the performance, as measured by the marginal likelihood, improves monotonically with the input dimension.
We also prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent.
arXiv Detail & Related papers (2022-10-14T08:09:33Z) - Uncertainty relation for indirect measurement [4.111899441919164]
Indirect measurement can be used to read out the outcome of a quantum system without resorting to a straightforward approach.
We derive a new measurement uncertainty with respect to indirect measurement in the light of quantum thermodynamics.
arXiv Detail & Related papers (2022-08-05T18:11:24Z) - Uncertainty relations from graph theory [0.0]
Quantum measurements are inherently probabilistic and quantum theory often forbids to precisely predict the outcomes of simultaneous measurements.
We derive uncertainty relations valid for any set of dichotomic observables.
As applications, our results can be straightforwardly used to formulate entropic uncertainty relations, separability criteria and entanglement witnesses.
arXiv Detail & Related papers (2022-07-05T17:57:31Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
We study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable.
We introduce a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-06-07T10:14:18Z) - Experimental test of the majorization uncertainty relation with mixed
states [6.613272059966484]
The uncertainty relation lies at the heart of quantum theory and behaves as a non-classical constraint on the indeterminacies of incompatible observables in a system.
In this work we test the novel majorization uncertainty relations of three incompatible observables using a series of mixed states with adjustable mixing degrees.
arXiv Detail & Related papers (2021-04-07T01:18:32Z) - Linear simultaneous measurements of position and momentum with minimum
error-trade-off in each minimum uncertainty state [0.0]
Heisenberg's uncertainty relations are the most famous of them but are not universally valid and violated in general.
We show that an error-trade-off relation (ETR), called the Branciard-Ozawa ETR, for simultaneous measurements of position and momentum gives the achievable bound in minimum uncertainty states.
arXiv Detail & Related papers (2021-01-15T15:26:14Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.