Experimental test of the majorization uncertainty relation with mixed
states
- URL: http://arxiv.org/abs/2104.02848v2
- Date: Mon, 15 Nov 2021 07:37:21 GMT
- Title: Experimental test of the majorization uncertainty relation with mixed
states
- Authors: Shuang Wang, Fang-Xia Meng, Hui Wang, Cong-Feng Qiao
- Abstract summary: The uncertainty relation lies at the heart of quantum theory and behaves as a non-classical constraint on the indeterminacies of incompatible observables in a system.
In this work we test the novel majorization uncertainty relations of three incompatible observables using a series of mixed states with adjustable mixing degrees.
- Score: 6.613272059966484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The uncertainty relation lies at the heart of quantum theory and behaves as a
non-classical constraint on the indeterminacies of incompatible observables in
a system. In the literature, many experiments have been devoted to the test of
the uncertainty relations which mainly focus on the pure states. In this work
we test the novel majorization uncertainty relations of three incompatible
observables using a series of mixed states with adjustable mixing degrees, and
compare the compactness of various entropy uncertainty relations. The
experimental results confirm that for general mixed quantum system, the
majorization uncertainty relation tends to be the tightest constraint on
uncertainty, and indicate that the entropy uncertainty relation obtained from
the majorzation uncertainty relation is the optimal one. Our experimental setup
provides an easy means for preparing mixed states, and based on this simple
optical elements can be utilized to realize the required quantum states.
Related papers
- Unveiling quantum steering by quantum-classical uncertainty complementarity [0.0]
We introduce a novel complementarity relation between system's quantum and classical uncertainties.
We demonstrate a superior steering detection efficiency compared to an entropic uncertainty relation.
arXiv Detail & Related papers (2023-12-02T07:49:20Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Dynamics Investigation of the quantum-control-assisted multipartite
uncertainty relation in Heisenberg model with Dzyaloshinski-Moriya
interaction [10.664589057582157]
Zheng constructs a quantum-control-assisted multipartite variance-based uncertainty relation.
We investigate the dynamics of the new uncertainty relation in the Heisenberg system with the Dzyaloshinski-Moriya interaction.
arXiv Detail & Related papers (2023-08-25T12:11:42Z) - Measurement incompatibility is strictly stronger than disturbance [44.99833362998488]
Heisenberg argued that measurements irreversibly alter the state of the system on which they are acting, causing an irreducible disturbance on subsequent measurements.
This article shows that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement disturbance.
However, we exhibit a toy theory, termed the minimal classical theory (MCT), that is a counterexample for the converse implication.
arXiv Detail & Related papers (2023-05-26T13:47:00Z) - Causal Discovery via Conditional Independence Testing with Proxy Variables [35.3493980628004]
The presence of unobserved variables, such as the latent confounder, can introduce bias in conditional independence testing.
We propose a novel hypothesis-testing procedure that can effectively examine the existence of the causal relationship over continuous variables.
arXiv Detail & Related papers (2023-05-09T09:08:39Z) - Uncertainty relation for indirect measurement [4.111899441919164]
Indirect measurement can be used to read out the outcome of a quantum system without resorting to a straightforward approach.
We derive a new measurement uncertainty with respect to indirect measurement in the light of quantum thermodynamics.
arXiv Detail & Related papers (2022-08-05T18:11:24Z) - Disturbance Enhanced Uncertainty Relations [2.075038010521211]
We show that disturbance of one measurement to a subsequent measurement sets lower-bounds to uncertainty.
The obtained relations, referred to as disturbance enhanced uncertainty relations, immediately find various applications in the field of quantum information.
We anticipate that this new twist on uncertainty principle may shed new light on quantum foundations and may also inspire further applications in the field of quantum information.
arXiv Detail & Related papers (2022-02-15T08:37:24Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Experimental certification of nonclassicality via phase-space
inequalities [58.720142291102135]
We present the first experimental implementation of the recently introduced phase-space inequalities for nonclassicality certification.
We demonstrate the practicality and sensitivity of this approach by studying nonclassicality of a family of noisy and lossy quantum states of light.
arXiv Detail & Related papers (2020-10-01T09:03:52Z) - A Universal Formulation of Uncertainty Relation for Error and
Disturbance [0.9479435599284545]
We present a universal formulation of uncertainty relation valid for any conceivable quantum measurement.
Owing to its simplicity and operational tangibility, our general relation is also experimentally verifiable.
arXiv Detail & Related papers (2020-04-13T17:57:41Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.