論文の概要: Contextual Importance and Utility: aTheoretical Foundation
- arxiv url: http://arxiv.org/abs/2202.07292v1
- Date: Tue, 15 Feb 2022 10:18:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-16 13:55:20.393536
- Title: Contextual Importance and Utility: aTheoretical Foundation
- Title(参考訳): 文脈的重要性とユーティリティ:理論的基礎
- Authors: Kary Fr\"amling
- Abstract要約: 本稿では,eXplainable AI (XAI) メソッド Contextual Importance and Utility (CIU) をサポートする新しい理論を提案する。
文脈影響という新しい概念も定義されており、モデルに依存しない結果説明のためのCIUといわゆる加法的特徴属性(AFA)メソッドを直接比較することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper provides new theory to support to the eXplainable AI (XAI) method
Contextual Importance and Utility (CIU). CIU arithmetic is based on the
concepts of Multi-Attribute Utility Theory, which gives CIU a solid theoretical
foundation. The novel concept of contextual influence is also defined, which
makes it possible to compare CIU directly with so-called additive feature
attribution (AFA) methods for model-agnostic outcome explanation. One key
takeaway is that the "influence" concept used by AFA methods is inadequate for
outcome explanation purposes even for simple models to explain. Experiments
with simple models show that explanations using contextual importance (CI) and
contextual utility (CU) produce explanations where influence-based methods
fail. It is also shown that CI and CU guarantees explanation faithfulness
towards the explained model.
- Abstract(参考訳): 本稿では,eXplainable AI (XAI) メソッド Contextual Importance and Utility (CIU) をサポートするための新しい理論を提案する。
CIU算術は、CIUにしっかりとした理論基盤を与えるマルチ属性ユーティリティ理論の概念に基づいている。
文脈影響という新しい概念も定義されており、モデルに依存しない結果説明のためのCIUといわゆる加法的特徴属性(AFA)メソッドを直接比較することができる。
afaメソッドで使われる"インフルエンス(influence)"の概念は、単純なモデルでも結果説明の目的には不十分である。
単純なモデルを用いた実験では、文脈的重要性(CI)と文脈的有用性(CU)を用いた説明が、影響に基づく手法が失敗する理由を説明する。
CIとCUは、説明モデルに対する説明の忠実性を保証することも示している。
関連論文リスト
- An AI Architecture with the Capability to Explain Recognition Results [0.0]
本研究は、説明可能性に対するメトリクスの重要性に焦点をあて、性能向上をもたらす2つの方法に貢献する。
第1の方法は説明不能なフローと説明不能なフローの組み合わせを導入し、意思決定の説明容易性を特徴づける指標を提案する。
第2の方法は、システム内のニューラルネットワークの有効性を推定するための古典的なメトリクスを比較し、新しいメトリックをリードパフォーマーとして振る舞う。
論文 参考訳(メタデータ) (2024-06-13T02:00:13Z) - Learning by Self-Explaining [23.420673675343266]
我々は、自己説明による学習(LSX)と呼ばれる画像分類の文脈において、新しいワークフローを導入する。
LSXは、自己修復型AIと人間誘導型説明機械学習の側面を利用する。
本結果は,自己説明による学習による改善を,いくつかのレベルで示すものである。
論文 参考訳(メタデータ) (2023-09-15T13:41:57Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
本稿では,データとモデル間の相互作用を実験的に解析する新しいツールであるインタラクションテンソルを紹介する。
これらの観測に基づいて,特徴学習のための概念的枠組みを提案する。
この枠組みの下では、一つの仮説に対する期待された精度と一対の仮説に対する合意はどちらも閉形式で導出することができる。
論文 参考訳(メタデータ) (2023-06-07T21:35:26Z) - A Theoretical Framework for AI Models Explainability with Application in
Biomedicine [3.5742391373143474]
本稿では,文献に見いだせる内容の合成である説明の新たな定義を提案する。
我々は、忠実性(すなわち、モデルの内部動作と意思決定プロセスの真の説明である説明)と可否性(つまり、その説明がどの程度ユーザにとって説得力のあるように見えるか)の性質に、説明を適合させる。
論文 参考訳(メタデータ) (2022-12-29T20:05:26Z) - Complementary Explanations for Effective In-Context Learning [77.83124315634386]
大規模言語モデル (LLM) は、説明のインプロンプトから学習する際、顕著な能力を示した。
この研究は、文脈内学習に説明が使用されるメカニズムをよりよく理解することを目的としている。
論文 参考訳(メタデータ) (2022-11-25T04:40:47Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - RELAX: Representation Learning Explainability [10.831313203043514]
本稿では、帰属に基づく表現の説明のための最初のアプローチであるRELAXを提案する。
ReLAXは、入力とマスクアウトされた自身のバージョンの間の表現空間における類似性を測定することで表現を説明する。
我々はRELAXの理論的解釈を提供し、教師なし学習を用いて訓練された特徴抽出器を新規に解析する。
論文 参考訳(メタデータ) (2021-12-19T14:51:31Z) - Explaining by Removing: A Unified Framework for Model Explanation [14.50261153230204]
削除に基づく説明は、各特徴の影響を定量化するための特徴除去をシミュレートする原則に基づいている。
1) メソッドが特徴を除去する方法,2) メソッドが説明するモデル動作,3) メソッドがそれぞれの特徴の影響を要約する方法,の3つの側面に沿って各メソッドを特徴付けるフレームワークを開発する。
新たに理解された説明手法のクラスは、説明可能性の文献にほとんど見落とされたツールを用いて、豊富なつながりを持つ。
論文 参考訳(メタデータ) (2020-11-21T00:47:48Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
因果推論に基づく因果意味生成モデル(CSG)を提案し,その2つの要因を別々にモデル化する。
CSGはトレーニングデータに適合させることで意味的因子を識別できることを示し、この意味的識別はOOD一般化誤差の有界性を保証する。
論文 参考訳(メタデータ) (2020-11-03T13:16:05Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。