論文の概要: DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex
Hazard Structures in Survival Analysis
- arxiv url: http://arxiv.org/abs/2202.07423v1
- Date: Sat, 12 Feb 2022 11:38:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-16 14:30:31.356014
- Title: DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex
Hazard Structures in Survival Analysis
- Title(参考訳): DeepPAMM: 生存分析における複雑なハザード構造に対する深度指数加算混合モデル
- Authors: Philipp Kopper, Simon Wiegrebe, Bernd Bischl, Andreas Bender, David
R\"ugamer
- Abstract要約: サバイバル分析(英: Survival analysis、SA)は、時間と時間に関する研究の活発な分野である。
その重要性にもかかわらず、SAは小規模なデータセットと複雑な結果分布のために依然として困難である。
本稿では,複雑な危険構造をモデル化する上で十分な柔軟性を持ちながら,統計的観点から十分に構築された汎用的なディープラーニングフレームワークであるDeepPAMMを提案する。
- 参考スコア(独自算出の注目度): 0.7349727826230864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Survival analysis (SA) is an active field of research that is concerned with
time-to-event outcomes and is prevalent in many domains, particularly
biomedical applications. Despite its importance, SA remains challenging due to
small-scale data sets and complex outcome distributions, concealed by
truncation and censoring processes. The piecewise exponential additive mixed
model (PAMM) is a model class addressing many of these challenges, yet PAMMs
are not applicable in high-dimensional feature settings or in the case of
unstructured or multimodal data. We unify existing approaches by proposing
DeepPAMM, a versatile deep learning framework that is well-founded from a
statistical point of view, yet with enough flexibility for modeling complex
hazard structures. We illustrate that DeepPAMM is competitive with other
machine learning approaches with respect to predictive performance while
maintaining interpretability through benchmark experiments and an extended case
study.
- Abstract(参考訳): サバイバル分析(英: Survival analysis、SA)は、時間から時間への結果に関する研究の活発な分野であり、多くの領域、特にバイオメディカルな応用で普及している。
その重要性にもかかわらず、saは小規模データセットと複雑な結果分布のために依然として困難であり、切断と検閲のプロセスによって隠蔽されている。
pamm (splitwise exponential additive mixed model) は、これらの課題の多くに対処するモデルクラスであるが、pammは高次元の特徴設定や非構造化データやマルチモーダルデータでは適用できない。
私たちはDeepPAMMという,統計的視点から見れば十分だが,複雑なハザード構造をモデル化するのに十分な柔軟性を備えた,汎用的なディープラーニングフレームワークを提案することによって,既存のアプローチを統一する。
我々は,DeepPAMMがベンチマーク実験と拡張ケーススタディを通じて解釈可能性を維持しつつ,予測性能に関して他の機械学習手法と競合することを示す。
関連論文リスト
- Utilizing Large Language Models for Event Deconstruction to Enhance Multimodal Aspect-Based Sentiment Analysis [2.1329326061804816]
本稿では,イベント分解のためのLarge Language Models (LLMs)を導入し,マルチモーダル・アスペクト・ベース・センチメント分析(MABSA-RL)のための強化学習フレームワークを提案する。
実験の結果,MABSA-RLは2つのベンチマークデータセットにおいて既存手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-18T03:40:45Z) - Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
事前訓練された微調整パラダイムに基づく大規模言語モデル(LLM)は、自然言語処理タスクの解決において重要な役割を担っている。
本稿では,自己回帰 LLM に着目し,HMM (Hidden Markov Models) を用いたモデリングを提案する。
論文 参考訳(メタデータ) (2024-10-01T13:53:44Z) - Amortized Bayesian Multilevel Models [9.831471158899644]
マルチレベルモデル(MLM)はベイズワークフローの中心的なビルディングブロックである。
MLMは重要な計算上の課題を生じさせ、しばしばその推定と評価は合理的な時間制約の中で難解である。
シミュレーションに基づく推論の最近の進歩は、深層生成ネットワークを用いた複雑な確率モデルに対処するための有望な解決策を提供する。
我々は、マルチレベルモデルの確率的分解を利用して、効率的なニューラルネットワークトレーニングと、未知のデータセットに対する後続の即時推論を容易にするニューラルネットワークアーキテクチャのファミリーを探索する。
論文 参考訳(メタデータ) (2024-08-23T17:11:04Z) - HyperMM : Robust Multimodal Learning with Varying-sized Inputs [4.377889826841039]
HyperMMは、さまざまなサイズの入力で学習するために設計されたエンドツーエンドフレームワークである。
本稿では,条件付きハイパーネットワークを用いたユニバーサル特徴抽出器のトレーニング手法を提案する。
アルツハイマー病の診断と乳癌の分類の2つの課題において,本手法の利点を実験的に実証した。
論文 参考訳(メタデータ) (2024-07-30T12:13:18Z) - Assessing biomedical knowledge robustness in large language models by query-efficient sampling attacks [0.6282171844772422]
大規模言語モデル(LLM)におけるパラメトリックドメイン知識の深化は、現実世界のアプリケーションへの迅速な展開を加速させている。
近年、自然言語処理タスクの逆例として命名されたエンティティが発見され、事前訓練されたLLMの知識の堅牢性に対するそれらの潜在的な影響に関する疑問が提起されている。
バイオメディカル知識のロバスト性を評価するために,パワースケール距離重み付きサンプリングに基づく埋め込み空間攻撃を開発した。
論文 参考訳(メタデータ) (2024-02-16T09:29:38Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
決定論的MoEモデルに基づく最小二乗推定器(LSE)の性能について検討する。
我々は,多種多様な専門家関数の収束挙動を特徴付けるために,強い識別可能性という条件を確立する。
本研究は,専門家の選択に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-02-05T12:31:18Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
Modulation [69.34011200590817]
本稿では,特徴量線形変調の概念に基づく暗黙のアンサンブル手法であるFiLM-Ensembleを紹介する。
単一ディープネットワークのネットワークアクティベーションをFiLMで変調することにより、高多様性のモデルアンサンブルを得る。
我々は、FiLM-Ensembleが他の暗黙のアンサンブル法よりも優れており、ネットワークの明示的なアンサンブルの上限に非常に近いことを示す。
論文 参考訳(メタデータ) (2022-05-31T18:33:15Z) - Efficient Reinforcement Learning in Block MDPs: A Model-free
Representation Learning Approach [73.62265030773652]
ブロック構造力学を用いたマルコフ決定過程における効率的な強化学習アルゴリズムであるBRIEEを提案する。
BRIEEは、潜伏状態の発見、探索、搾取を相互にインターリーブし、ほぼ最適な政策を確実に学べる。
我々は、BRIEEが最先端のBlock MDPアルゴリズムであるHOMER RLや、リッチ・オブザーブレーションの組み合わせロック問題に挑戦する経験的ベースラインよりも、より標本効率が高いことを示す。
論文 参考訳(メタデータ) (2022-01-31T19:47:55Z) - Sample-Efficient Reinforcement Learning of Undercomplete POMDPs [91.40308354344505]
この研究は、これらの硬度障壁が、部分観測可能決定過程(POMDP)の豊かで興味深いサブクラスに対する効率的な強化学習を妨げないことを示している。
提案手法は, 観測回数が潜伏状態の数よりも大きく, 探索が学習に不可欠であり, 先行研究と区別できるような, エピソード有限不完全POMDPに対するサンプル効率アルゴリズムOOM-UCBを提案する。
論文 参考訳(メタデータ) (2020-06-22T17:58:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。