Relational Artificial Intelligence
- URL: http://arxiv.org/abs/2202.07446v1
- Date: Fri, 4 Feb 2022 15:29:57 GMT
- Title: Relational Artificial Intelligence
- Authors: Virginia Dignum
- Abstract summary: Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
- Score: 5.5586788751870175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The impact of Artificial Intelligence does not depend only on fundamental
research and technological developments, but for a large part on how these
systems are introduced into society and used in everyday situations. Even
though AI is traditionally associated with rational decision making,
understanding and shaping the societal impact of AI in all its facets requires
a relational perspective. A rational approach to AI, where computational
algorithms drive decision making independent of human intervention, insights
and emotions, has shown to result in bias and exclusion, laying bare societal
vulnerabilities and insecurities. A relational approach, that focus on the
relational nature of things, is needed to deal with the ethical, legal,
societal, cultural, and environmental implications of AI. A relational approach
to AI recognises that objective and rational reasoning cannot does not always
result in the 'right' way to proceed because what is 'right' depends on the
dynamics of the situation in which the decision is taken, and that rather than
solving ethical problems the focus of design and use of AI must be on asking
the ethical question. In this position paper, I start with a general discussion
of current conceptualisations of AI followed by an overview of existing
approaches to governance and responsible development and use of AI. Then, I
reflect over what should be the bases of a social paradigm for AI and how this
should be embedded in relational, feminist and non-Western philosophies, in
particular the Ubuntu philosophy.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
We argue that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed.
We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview.
We introduce a new mapping, which justifies the humans to AI biases and we detect relevant fairness intensities and inter-dependencies.
arXiv Detail & Related papers (2024-07-30T21:34:04Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
Ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact.
This work unifies the current and future ethical concerns of deploying AI into society.
arXiv Detail & Related papers (2023-11-28T21:00:56Z) - Towards a Feminist Metaethics of AI [0.0]
I argue that these insufficiencies could be mitigated by developing a research agenda for a feminist metaethics of AI.
Applying this perspective to the context of AI, I suggest that a feminist metaethics of AI would examine: (i) the continuity between theory and action in AI ethics; (ii) the real-life effects of AI ethics; (iii) the role and profile of those involved in AI ethics; and (iv) the effects of AI on power relations through methods that pay attention to context, emotions and narrative.
arXiv Detail & Related papers (2023-11-10T13:26:45Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
The paper highlights the impact AI has in every sector of the US economy and the resultant effect on entities spanning businesses, government, academia, and civil society.
Our discussion explores eleven fundamental 'ethical principles' structured as overarching themes.
These encompass Transparency, Justice, Fairness, Equity, Non- Maleficence, Responsibility, Accountability, Privacy, Beneficence, Freedom, Autonomy, Trust, Dignity, Sustainability, and Solidarity.
arXiv Detail & Related papers (2023-10-09T14:29:00Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
Technologists and AI researchers have a responsibility to develop trustworthy AI systems.
To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness.
arXiv Detail & Related papers (2021-01-01T17:34:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.