論文の概要: A Review of Topological Data Analysis for Cybersecurity
- arxiv url: http://arxiv.org/abs/2202.08037v1
- Date: Wed, 16 Feb 2022 13:03:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-17 21:11:17.032027
- Title: A Review of Topological Data Analysis for Cybersecurity
- Title(参考訳): サイバーセキュリティのためのトポロジカルデータ分析の展望
- Authors: Thomas Davies
- Abstract要約: トポロジカルデータ解析(TDA)は、代数的トポロジの技法を用いて、データの高レベル構造を研究する。
我々は、サイバーセキュリティデータサイエンスを改善する強力な可能性を持つ、有望な新しい領域について、研究者に強調したい。
- 参考スコア(独自算出の注目度): 1.0878040851638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In cybersecurity it is often the case that malicious or anomalous activity
can only be detected by combining many weak indicators of compromise, any one
of which may not raise suspicion when taken alone. The path that such
indicators take can also be critical. This makes the problem of analysing
cybersecurity data particularly well suited to Topological Data Analysis (TDA),
a field that studies the high level structure of data using techniques from
algebraic topology, both for exploratory analysis and as part of a machine
learning workflow. By introducing TDA and reviewing the work done on its
application to cybersecurity, we hope to highlight to researchers a promising
new area with strong potential to improve cybersecurity data science.
- Abstract(参考訳): サイバーセキュリティにおいては、悪意または異常な活動は、妥協の弱い指標を多く組み合わせることによってのみ検出され、そのうちのどれかが単独で取られた場合に疑念を起こさない場合が多い。
このような指標が持つ経路も重要である。
これにより、特に、探索的分析と機械学習ワークフローの一部として、代数的トポロジーの技法を用いてデータの高レベル構造を研究する分野であるトポロジカルデータ分析(tda)に適合するサイバーセキュリティデータを解析する問題が解決される。
tdaを導入し、サイバーセキュリティへの応用の成果をレビューすることで、サイバーセキュリティデータサイエンスを改善する強力な可能性を持つ、有望な新しい領域を研究者に示すことを望んでいる。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects [0.33554367023486936]
本稿では,機械学習を用いたネットワーク侵入検知システム(NIDS)の総合的なレビューを行う。
NIDSにおける既存の研究を批判的に検討し、重要なトレンド、強み、限界を強調した。
我々は、この分野における新たな課題について議論し、より堅牢でレジリエントなNIDSの開発に向けた洞察を提供する。
論文 参考訳(メタデータ) (2024-09-27T13:27:29Z) - Enhancing Cyber Security through Predictive Analytics: Real-Time Threat Detection and Response [0.0]
調査では、ネットワークトラフィックとセキュリティイベントの2000インスタンスを含む、Kaggleのデータセットを使用している。
その結果,予測分析は脅威の警戒と応答時間を高めることが示唆された。
本稿では,予防的サイバーセキュリティ戦略開発における重要な要素として,予測分析を提唱する。
論文 参考訳(メタデータ) (2024-07-15T16:11:34Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワークに対するマルチステップ攻撃に対するサイバーリスクアセスメントをサポートする最も適したソリューションである。
現在の解決策は、アルゴリズムの観点から生成問題に対処し、生成が完了した後のみ解析を仮定することである。
本稿では,アナリストがいつでもシステムに問い合わせることのできる新しいワークフローを通じて,従来のAG分析を再考する。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Stepping out of Flatland: Discovering Behavior Patterns as Topological Structures in Cyber Hypergraphs [0.7835894511242797]
本稿では,ハイパーグラフとトポロジ理論に基づく新しいフレームワークを提案する。
大規模なサイバーネットワークデータセットで具体例を示す。
論文 参考訳(メタデータ) (2023-11-08T00:00:33Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - PicoDomain: A Compact High-Fidelity Cybersecurity Dataset [0.9281671380673305]
現在のサイバーセキュリティデータセットは、根拠のない真実を提供するか、匿名化されたデータでそれを行う。
既存のデータセットのほとんどは、プロトタイプ開発中に扱いにくいほどの大きさです。
本稿では,現実的な侵入から得られたZeekログのコンパクトな高忠実度収集であるPicoDomainデータセットを開発した。
論文 参考訳(メタデータ) (2020-08-20T20:18:04Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。