論文の概要: CAREER: A Foundation Model for Labor Sequence Data
- arxiv url: http://arxiv.org/abs/2202.08370v4
- Date: Thu, 29 Feb 2024 16:58:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-03 15:28:37.991572
- Title: CAREER: A Foundation Model for Labor Sequence Data
- Title(参考訳): CAREER:労働シーケンスデータの基礎モデル
- Authors: Keyon Vafa, Emil Palikot, Tianyu Du, Ayush Kanodia, Susan Athey, David
M. Blei
- Abstract要約: ジョブシーケンスの基礎モデルであるCAREERを開発した。
CAREERは最初、大規模で受動的に収集された履歴データに適合し、その後、経済的な推測のためにより小さく、より精度の良いデータセットに微調整される。
我々はCAREERがジョブシーケンスの正確な予測をし、広く使われている3つの経済データセットのエコノメトリベースラインを上回ります。
- 参考スコア(独自算出の注目度): 21.38386300423882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Labor economists regularly analyze employment data by fitting predictive
models to small, carefully constructed longitudinal survey datasets. Although
machine learning methods offer promise for such problems, these survey datasets
are too small to take advantage of them. In recent years large datasets of
online resumes have also become available, providing data about the career
trajectories of millions of individuals. However, standard econometric models
cannot take advantage of their scale or incorporate them into the analysis of
survey data. To this end we develop CAREER, a foundation model for job
sequences. CAREER is first fit to large, passively-collected resume data and
then fine-tuned to smaller, better-curated datasets for economic inferences. We
fit CAREER to a dataset of 24 million job sequences from resumes, and adjust it
on small longitudinal survey datasets. We find that CAREER forms accurate
predictions of job sequences, outperforming econometric baselines on three
widely-used economics datasets. We further find that CAREER can be used to form
good predictions of other downstream variables. For example, incorporating
CAREER into a wage model provides better predictions than the econometric
models currently in use.
- Abstract(参考訳): 労働経済学者は、小規模で注意深く構築された縦断調査データセットに予測モデルを適用することで、雇用データを定期的に分析する。
機械学習の手法はそのような問題に対する保証を提供するが、これらの調査データセットは小さすぎて活用できない。
近年、オンライン履歴書の大規模なデータセットも利用可能になり、数百万人の個人のキャリア跡に関するデータを提供している。
しかし、標準計量モデルは、そのスケールを活用できないし、サーベイデータの分析に組み込むことはできない。
そこで我々は,ジョブシーケンスの基礎モデルであるCAREERを開発した。
キャリアはまず、大きく、受動的に収集された履歴データに適合し、次に経済推論のためのより小さく、より正確なデータセットに微調整される。
履歴書から2400万のジョブシーケンスのデータセットにキャリアを適合させ、小さな縦断調査データセットに調整します。
我々はCAREERがジョブシーケンスの正確な予測をし、広く使われている3つの経済データセットのエコノメトリベースラインを上回ります。
さらに,CAREERは,他の下流変数の予測に有効であることがわかった。
例えば、CAREERを賃金モデルに組み込むことで、現在使用されている計量モデルよりも優れた予測が可能になる。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Enriching Datasets with Demographics through Large Language Models: What's in a Name? [5.871504332441324]
LLM(Large Language Models)は、特殊なデータに基づいてトレーニングされた振る舞いモデルだけでなく、パフォーマンスも向上する。
香港の認可された金融専門家の実際のデータセットを含む、さまざまなデータセットにこれらのLCMを適用します。
論文 参考訳(メタデータ) (2024-09-17T18:40:49Z) - DSBench: How Far Are Data Science Agents to Becoming Data Science Experts? [58.330879414174476]
現実的なタスクでデータサイエンスエージェントを評価するためのベンチマークであるDSBenchを紹介する。
このベンチマークには、466のデータ分析タスクと、EloquenceとKaggleのコンペからソースされた74のデータモデリングタスクが含まれている。
現状のLLM, LVLM, エージェントを評価したところ, 最高のエージェントはデータ解析タスクの34.12%しか解決できず, RPG(Relative Performance Gap)は34.74%であった。
論文 参考訳(メタデータ) (2024-09-12T02:08:00Z) - Evaluating Pre-Training Bias on Severe Acute Respiratory Syndrome Dataset [0.0]
この研究は、OpenDataSUSの重症急性呼吸症候群データセットを使用して、3つのトレーニング済みバイアスメトリクスを可視化する。
目的は、異なる領域のバイアスを比較し、保護された属性に注目し、モデルのパフォーマンスとメトリック値を比較することである。
論文 参考訳(メタデータ) (2024-08-27T20:49:11Z) - LABOR-LLM: Language-Based Occupational Representations with Large Language Models [8.909328013944567]
本稿では,CAREER ファンデーションモデルの微調整を微調整 LLM に置き換える方法を検討する。
細調整されたLLMモデル予測は、市販のLLMモデルやCAREERよりも、様々な労働者サブ集団のキャリアトラジェクトリを代表していることを示す。
論文 参考訳(メタデータ) (2024-06-25T23:07:18Z) - Graphical vs. Deep Generative Models: Measuring the Impact of Differentially Private Mechanisms and Budgets on Utility [18.213030598476198]
私たちはグラフィカルモデルと深層生成モデルを比較し、プライバシー予算の支出に寄与する重要な要素に注目します。
グラフィカルモデルでは,プライバシ予算を水平方向に分散させることで,一定のトレーニング時間において比較的広いデータセットを処理できないことがわかった。
深層生成モデルはイテレーション毎に予算を消費するので、その振る舞いはさまざまなデータセットの次元で予測できない。
論文 参考訳(メタデータ) (2023-05-18T14:14:42Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
本稿では,モデルクラスの振る舞いを学習データの観点から分析するための概念的枠組みであるデータモデリングについて述べる。
単純な線形データモデルであっても、モデル出力をうまく予測できることが示される。
論文 参考訳(メタデータ) (2022-02-01T18:15:24Z) - When Can Models Learn From Explanations? A Formal Framework for
Understanding the Roles of Explanation Data [84.87772675171412]
個々のデータポイントの説明がモデリング性能を向上させる状況について検討する。
e-SNLI、TACRED、SemEvalの3つの既存のデータセットを使って説明します。
論文 参考訳(メタデータ) (2021-02-03T18:57:08Z) - REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets [64.76453161039973]
REVISE(Revealing VIsual biaSEs)は、視覚的データセットの調査を支援するツールである。
1)オブジェクトベース,(2)個人ベース,(3)地理ベースという3つの次元に沿った潜在的なバイアスを呈示する。
論文 参考訳(メタデータ) (2020-04-16T23:54:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。