論文の概要: ADD 2022: the First Audio Deep Synthesis Detection Challenge
- arxiv url: http://arxiv.org/abs/2202.08433v3
- Date: Tue, 2 Jul 2024 04:06:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 10:36:26.901332
- Title: ADD 2022: the First Audio Deep Synthesis Detection Challenge
- Title(参考訳): ADD 2022:初のオーディオ深層合成検出チャレンジ
- Authors: Jiangyan Yi, Ruibo Fu, Jianhua Tao, Shuai Nie, Haoxin Ma, Chenglong Wang, Tao Wang, Zhengkun Tian, Xiaohui Zhang, Ye Bai, Cunhang Fan, Shan Liang, Shiming Wang, Shuai Zhang, Xinrui Yan, Le Xu, Zhengqi Wen, Haizhou Li, Zheng Lian, Bin Liu,
- Abstract要約: 最初のオーディオディープ合成検出チャレンジ(ADD)は、ギャップを埋めるために動機付けられた。
ADD 2022には、低品質の偽オーディオ検出(LF)、部分的に偽オーディオ検出(PF)、オーディオ偽ゲーム(FG)の3つのトラックが含まれている。
- 参考スコア(独自算出の注目度): 92.41777858637556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audio deepfake detection is an emerging topic, which was included in the ASVspoof 2021. However, the recent shared tasks have not covered many real-life and challenging scenarios. The first Audio Deep synthesis Detection challenge (ADD) was motivated to fill in the gap. The ADD 2022 includes three tracks: low-quality fake audio detection (LF), partially fake audio detection (PF) and audio fake game (FG). The LF track focuses on dealing with bona fide and fully fake utterances with various real-world noises etc. The PF track aims to distinguish the partially fake audio from the real. The FG track is a rivalry game, which includes two tasks: an audio generation task and an audio fake detection task. In this paper, we describe the datasets, evaluation metrics, and protocols. We also report major findings that reflect the recent advances in audio deepfake detection tasks.
- Abstract(参考訳): オーディオディープフェイク検出は、ASVspoof 2021に含まれる新たなトピックである。
しかし、最近の共有タスクは多くの実生活と挑戦的なシナリオをカバーしていない。
最初のオーディオディープ合成検出チャレンジ(ADD)は、ギャップを埋めるために動機付けられた。
ADD 2022には、低品質の偽オーディオ検出(LF)、部分的に偽オーディオ検出(PF)、オーディオ偽ゲーム(FG)の3つのトラックが含まれている。
LFトラックは、さまざまな現実世界のノイズで、ボナ・フェイドと完全に偽の発話を扱うことに焦点を当てている。
PFトラックは、部分的に偽のオーディオと本物を区別することを目的としている。
FGトラックは、オーディオ生成タスクとオーディオ偽検出タスクの2つのタスクを含むライバルゲームである。
本稿では,データセット,評価指標,プロトコルについて述べる。
また,近年のオーディオディープフェイク検出タスクの進歩を反映した大きな発見も報告した。
関連論文リスト
- An RFP dataset for Real, Fake, and Partially fake audio detection [0.36832029288386137]
RFP da-tasetは、部分的フェイク(PF)、雑音を伴う音声、音声変換(VC)、テキスト音声(TTS)、リアルの5つの異なるオーディオタイプから構成される。
その後、データは複数の検出モデルを評価するために使用され、利用可能なモデルは、完全に偽のオーディオではなく、PFオーディオを検出するときに、著しく高い等速誤差率(EER)を発生させる。
論文 参考訳(メタデータ) (2024-04-26T23:00:56Z) - TranssionADD: A multi-frame reinforcement based sequence tagging model
for audio deepfake detection [11.27584658526063]
第2回Audio Deepfake Detection Challenge (ADD 2023)は、ディープフェイク音声の検出と分析を目的としている。
本稿では,モデルロバストネスと音声セグメント出力の解法として,新しいTranssionADDシステムを提案する。
提案システムの有効性とロバスト性を実証し, トラック2で2位となった。
論文 参考訳(メタデータ) (2023-06-27T05:18:25Z) - Betray Oneself: A Novel Audio DeepFake Detection Model via
Mono-to-Stereo Conversion [70.99781219121803]
Audio Deepfake Detection (ADD)は、テキスト音声(TTS)、音声変換(VC)、再生などによって生成された偽音声を検出することを目的としている。
M2S-ADDと呼ばれる新しいADDモデルを提案する。
論文 参考訳(メタデータ) (2023-05-25T02:54:29Z) - SceneFake: An Initial Dataset and Benchmarks for Scene Fake Audio Detection [54.74467470358476]
本稿では,シーンフェイク音声検出のためのデータセットSceneFakeを提案する。
操作されたオーディオは、オリジナルオーディオの音響シーンを改ざんするだけで生成される。
本論文では,SceneFakeデータセット上での擬似音声検出ベンチマーク結果について報告する。
論文 参考訳(メタデータ) (2022-11-11T09:05:50Z) - An Initial Investigation for Detecting Vocoder Fingerprints of Fake
Audio [53.134423013599914]
本稿では,偽音声のボコーダ指紋を検出するための新しい問題を提案する。
8つの最先端ボコーダによって合成されたデータセットについて実験を行った。
論文 参考訳(メタデータ) (2022-08-20T09:23:21Z) - Partially Fake Audio Detection by Self-attention-based Fake Span
Discovery [89.21979663248007]
本稿では,部分的に偽の音声を検出する自己認識機構を備えた質問応答(フェイクスパン発見)戦略を導入することで,新たな枠組みを提案する。
ADD 2022の部分的に偽の音声検出トラックで第2位にランクインした。
論文 参考訳(メタデータ) (2022-02-14T13:20:55Z) - Half-Truth: A Partially Fake Audio Detection Dataset [60.08010668752466]
本稿では半真性音声検出(HAD)のためのデータセットを開発する。
HADデータセットの部分的に偽の音声は、発話中の数単語だけを変更する。
我々は、偽のユトランを検知するだけでなく、このデータセットを用いて音声中の操作された領域をローカライズする。
論文 参考訳(メタデータ) (2021-04-08T08:57:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。