論文の概要: Does the End Justify the Means? On the Moral Justification of
Fairness-Aware Machine Learning
- arxiv url: http://arxiv.org/abs/2202.08536v1
- Date: Thu, 17 Feb 2022 09:26:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 14:55:41.229071
- Title: Does the End Justify the Means? On the Moral Justification of
Fairness-Aware Machine Learning
- Title(参考訳): 終わりは意味を正当化するのか?
フェアネスを考慮した機械学習のモラル正当性について
- Authors: Hilde Weerts, Lamb\`er Royakkers, Mykola Pechenizkiy
- Abstract要約: フェアネスを意識した機械学習(fair-ml)アルゴリズムが豊富にあるにもかかわらず、これらのアルゴリズムがどのようにフェアネスメトリクスを強制するかという道徳的な正当化は、ほとんど探索されていない。
フェアネスの指標を正当化できる3つの命題を提示する。
我々は,アルゴリズムに固有の2つの最適化戦略,グループ固有の決定しきい値とランダム化された決定しきい値に焦点をあてる。
- 参考スコア(独自算出の注目度): 6.327435698167334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite an abundance of fairness-aware machine learning (fair-ml) algorithms,
the moral justification of how these algorithms enforce fairness metrics is
largely unexplored. The goal of this paper is to elicit the moral implications
of a fair-ml algorithm. To this end, we first consider the moral justification
of the fairness metrics for which the algorithm optimizes. We present an
extension of previous work to arrive at three propositions that can justify the
fairness metrics. Different from previous work, our extension highlights that
the consequences of predicted outcomes are important for judging fairness. We
draw from the extended framework and empirical ethics to identify moral
implications of the fair-ml algorithm. We focus on the two optimization
strategies inherent to the algorithm: group-specific decision thresholds and
randomized decision thresholds. We argue that the justification of the
algorithm can differ depending on one's assumptions about the (social) context
in which the algorithm is applied - even if the associated fairness metric is
the same. Finally, we sketch paths for future work towards a more complete
evaluation of fair-ml algorithms, beyond their direct optimization objectives.
- Abstract(参考訳): フェアネス認識機械学習(fair-ml)アルゴリズムは豊富であるが、これらのアルゴリズムがどのようにフェアネスメトリクスを強制するかの道徳的正当性はほとんど未解明である。
本研究の目的は,fair-mlアルゴリズムの道徳的意味を引き出すことである。
この目的のために、まずアルゴリズムが最適化する公平度指標の道徳的正当性を考察する。
我々は、フェアネスのメトリクスを正当化できる3つの命題に到達するために、以前の作業の拡張を示す。
これまでの作業とは違って,予測結果の結果が公平さを判断する上で重要であることを強調する。
我々は、fair-mlアルゴリズムの道徳的意味を識別するために、拡張された枠組みと経験的倫理から引き出す。
我々は、アルゴリズムに固有の2つの最適化戦略に焦点を当てる:グループ固有の決定しきい値とランダム化された決定しきい値。
我々は、アルゴリズムの正当化は、アルゴリズムが適用される(社会的)コンテキストについての仮定によって、たとえ関連するフェアネス計量が同じであっても、異なる可能性があると主張する。
最後に,fair-mlアルゴリズムのより完全な評価に向けた今後の研究の道筋を,直接最適化の目的を超えてスケッチする。
関連論文リスト
- Implementing Fairness: the view from a FairDream [0.0]
私たちはAIモデルをトレーニングし、不平等を検出して修正するために、独自の公正パッケージFairDreamを開発します。
本実験は,FairDreamの特性として,真理を条件としたフェアネスの目標を達成できることを実証した。
論文 参考訳(メタデータ) (2024-07-20T06:06:24Z) - What's Distributive Justice Got to Do with It? Rethinking Algorithmic Fairness from the Perspective of Approximate Justice [1.8434042562191815]
不完全な意思決定システムという文脈では、個人間での利益/利益の理想的な分配がどのようなものになるかだけを気にすべきではない、と私たちは主張する。
このためには、アルゴリズムフェアネス研究者として、分配的正義を見極め、公正性基準を使用する方法を再考する必要がある。
論文 参考訳(メタデータ) (2024-07-17T11:13:23Z) - Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
強化学習問題では、エージェントはリターンを最大化しながら長期的な公正性を考慮する必要がある。
近年の研究では様々なフェアネスの概念が提案されているが、RL問題における不公平性がどのように生じるかは定かではない。
我々は、環境力学から生じる不平等を明示的に捉える、ダイナミックスフェアネスという新しい概念を導入する。
論文 参考訳(メタデータ) (2024-04-16T22:47:59Z) - Navigating Fairness Measures and Trade-Offs [0.0]
私は、Rawlsの公正性の概念をフェアネスとして利用することで、公正性対策と正確なトレードオフをナビゲートするための基盤を作ることができることを示します。
これはまた、分配的正義の哲学的説明と公正文学の間のギャップを埋めるのにも役立っている。
論文 参考訳(メタデータ) (2023-07-17T13:45:47Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - The Unfairness of Fair Machine Learning: Levelling down and strict
egalitarianism by default [10.281644134255576]
本稿では,FairMLにおけるレベルダウンの原因と頻度について検討する。
本稿では,最小許容限のハーネス閾値の実施による設計によるフェアMLの実体的平等に向けた第一歩を提案する。
論文 参考訳(メタデータ) (2023-02-05T15:22:43Z) - Counterfactual Fairness Is Basically Demographic Parity [0.0]
公正な意思決定は、倫理的に機械学習アルゴリズムを社会的設定で実装する上で重要である。
また, 対実的公正性を満たすアルゴリズムが, 人口統計学的平等を満足することを示す。
我々は、保護グループ内の個人の秩序を維持するという具体的な公正目標を定式化する。
論文 参考訳(メタデータ) (2022-08-07T23:38:59Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Counterfactual Fairness with Partially Known Causal Graph [85.15766086381352]
本稿では,真の因果グラフが不明な場合に,対実フェアネスの概念を実現するための一般的な手法を提案する。
特定の背景知識が提供されると、正の因果グラフが完全に知られているかのように、反ファクト的公正性を達成することができる。
論文 参考訳(メタデータ) (2022-05-27T13:40:50Z) - Two Simple Ways to Learn Individual Fairness Metrics from Data [47.6390279192406]
個人的公正はアルゴリズム的公正の直感的な定義であり、グループ的公正の欠点のいくつかに対処する。
多くのMLタスクに対して広く受け入れられている公正な基準が欠如していることが、個人の公正を広く採用する大きな障壁である。
学習した指標による公正なトレーニングが、性別や人種的偏見に影響を受けやすい3つの機械学習タスクの公平性を改善することを実証的に示す。
論文 参考訳(メタデータ) (2020-06-19T23:47:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。