論文の概要: Fairness in Matching under Uncertainty
- arxiv url: http://arxiv.org/abs/2302.03810v2
- Date: Fri, 16 Jun 2023 17:41:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 17:44:07.219315
- Title: Fairness in Matching under Uncertainty
- Title(参考訳): 不確実性下での一致の公平性
- Authors: Siddartha Devic, David Kempe, Vatsal Sharan, Aleksandra Korolova
- Abstract要約: アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
- 参考スコア(独自算出の注目度): 78.39459690570531
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The prevalence and importance of algorithmic two-sided marketplaces has drawn
attention to the issue of fairness in such settings. Algorithmic decisions are
used in assigning students to schools, users to advertisers, and applicants to
job interviews. These decisions should heed the preferences of individuals, and
simultaneously be fair with respect to their merits (synonymous with fit,
future performance, or need). Merits conditioned on observable features are
always \emph{uncertain}, a fact that is exacerbated by the widespread use of
machine learning algorithms to infer merit from the observables. As our key
contribution, we carefully axiomatize a notion of individual fairness in the
two-sided marketplace setting which respects the uncertainty in the merits;
indeed, it simultaneously recognizes uncertainty as the primary potential cause
of unfairness and an approach to address it. We design a linear programming
framework to find fair utility-maximizing distributions over allocations, and
we show that the linear program is robust to perturbations in the estimated
parameters of the uncertain merit distributions, a key property in combining
the approach with machine learning techniques.
- Abstract(参考訳): アルゴリズム的二面市場の普及と重要性は、こうした設定における公平性の問題に注意を向けている。
アルゴリズム決定は、生徒を学校へ、ユーザーを広告主に、応募者を求職面接に割り当てるために使われる。
これらの決定は個人の好みを高め、そのメリット(適合性、将来のパフォーマンス、あるいはニーズ)に関して公平であるようにすべきである。
オブザーバブルな特徴に条件付けられたメリットは常に \emph{uncertain} であり、オブザーバブルからメリットを推測する機械学習アルゴリズムの広範な利用によってさらに悪化している。
重要な貢献として、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を慎重に公理化し、実際、不確実性は不公平の第一の潜在的な原因であり、それに対応するためのアプローチであると同時に認識する。
線形プログラミングフレームワークを設計し,提案手法を機械学習技術と組み合わせる上で重要な特性である,不確実な有益分布の推定パラメータの摂動に頑健であることを示す。
関連論文リスト
- Understanding Fairness Surrogate Functions in Algorithmic Fairness [21.555040357521907]
フェアネスの定義とフェアネスのサロゲート関数の間には、サロゲートとフェアネスのギャップがあることが示される。
我々は、不公平を緩和するギャップを反復的に減少させる「バランスド・サロゲート」という、新規で一般的なアルゴリズムを精査する。
論文 参考訳(メタデータ) (2023-10-17T12:40:53Z) - Individual Fairness under Uncertainty [26.183244654397477]
アルゴリズムフェアネス(英: Algorithmic Fairness)は、機械学習(ML)アルゴリズムにおいて確立された領域である。
本稿では,クラスラベルの検閲によって生じる不確実性に対処する,個別の公正度尺度とそれに対応するアルゴリズムを提案する。
この視点は、現実世界のアプリケーションデプロイメントにおいて、より現実的なフェアネス研究のモデルである、と我々は主張する。
論文 参考訳(メタデータ) (2023-02-16T01:07:58Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Learning Equilibria in Matching Markets from Bandit Feedback [139.29934476625488]
不確実性の下で安定した市場成果を学習するためのフレームワークとアルゴリズムを開発する。
私たちの研究は、大規模なデータ駆動の市場において、いつ、どのように安定したマッチングが生じるかを明らかにするための第一歩を踏み出します。
論文 参考訳(メタデータ) (2021-08-19T17:59:28Z) - Concurrent Discrimination and Alignment for Self-Supervised Feature
Learning [52.213140525321165]
既存の自己指導型学習手法は,(1)どの特徴が分離されるべきかを明確に示すこと,あるいは(2)どの特徴が閉じるべきかを明確に示すこと,のいずれかのプリテキストタスクを用いて学習する。
本研究では,識別・調整手法の正の側面を組み合わせて,上記の課題に対処するハイブリッド手法を設計する。
本手法は,識別的予測タスクによってそれぞれ反発とアトラクションのメカニズムを明確に特定し,ペアビュー間の相互情報を同時に最大化する。
確立された9つのベンチマーク実験により,提案モデルが自己監督と移動の既成結果より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2021-08-19T09:07:41Z) - Emergent Unfairness in Algorithmic Fairness-Accuracy Trade-Off Research [2.6397379133308214]
このような仮定は、しばしば暗黙的かつ未検討のまま残され、矛盾した結論につながると我々は主張する。
この研究の目的は、機械学習モデルの公平性を改善することだが、これらの未検討の暗黙の仮定は、実際、突発的な不公平をもたらす可能性がある。
論文 参考訳(メタデータ) (2021-02-01T22:02:14Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
グラフにおけるエッジ予測の課題に対する公平性の問題について検討する。
本稿では,任意のグラフの隣接行列に対して,グループと個々の公正性のトレードオフを伴う埋め込み非依存の補修手順を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:33:13Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
機械学習を実生活の意思決定システムに適用すると、予測結果は機密性の高い属性を持つ人々に対して差別され、不公平になる可能性がある。
公正機械学習における一般的な戦略は、予測損失の最小化において、制約や罰則として公正さを含めることである。
本稿では,多目的最適化問題を定式化して公平性を扱うための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-03T18:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。