論文の概要: Improving Rating and Relevance with Point-of-Interest Recommender System
- arxiv url: http://arxiv.org/abs/2202.08751v1
- Date: Thu, 17 Feb 2022 16:43:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 16:39:48.546798
- Title: Improving Rating and Relevance with Point-of-Interest Recommender System
- Title(参考訳): Point-of-Interest Recommender システムによるレーティングと関連性の改善
- Authors: Syed Raza Bashir, Vojislav Misic
- Abstract要約: 我々は、協調情報とコンテンツ情報の両方が存在する場合に、クエリとイテムの関連性をモデル化するディープニューラルネットワークアーキテクチャを開発する。
これらの学習された表現を大規模データセットに適用すると、大幅な改善がもたらされた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recommendation of points of interest (POIs) is essential in
location-based social networks. It makes it easier for users and locations to
share information. Recently, researchers tend to recommend POIs by treating
them as large-scale retrieval systems that require a large amount of training
data representing query-item relevance. However, gathering user feedback in
retrieval systems is an expensive task. Existing POI recommender systems make
recommendations based on user and item (location) interactions solely. However,
there are numerous sources of feedback to consider. For example, when the user
visits a POI, what is the POI is about and such. Integrating all these
different types of feedback is essential when developing a POI recommender. In
this paper, we propose using user and item information and auxiliary
information to improve the recommendation modelling in a retrieval system. We
develop a deep neural network architecture to model query-item relevance in the
presence of both collaborative and content information. We also improve the
quality of the learned representations of queries and items by including the
contextual information from the user feedback data. The application of these
learned representations to a large-scale dataset resulted in significant
improvements.
- Abstract(参考訳): 位置情報ベースのソーシャルネットワークでは,関心点(POI)の推薦が不可欠である。
これにより、ユーザや場所の情報共有が容易になる。
近年,質問項目関連性を表す大量の学習データを必要とする大規模検索システムとしてPOIを推奨する傾向にある。
しかし,検索システムにおけるユーザフィードバックの収集は高価である。
既存のPOIレコメンデータシステムは、ユーザとアイテム(ロケーション)のインタラクションのみに基づいてレコメンデーションを行います。
しかし、考慮すべきフィードバックの源はたくさんあります。
例えば、ユーザがPOIを訪れたとき、POIとは何かなどです。
POIレコメンデータの開発には,これらすべての種類のフィードバックを統合することが不可欠です。
本稿では,ユーザ情報とアイテム情報と補助情報を用いて検索システムにおけるレコメンデーションモデリングを改善することを提案する。
我々は,協調情報とコンテンツ情報の両方が存在する場合のクエリ-イテム関係をモデル化するディープニューラルネットワークアーキテクチャを開発した。
また、ユーザからのフィードバックデータからコンテキスト情報を含めることで、クエリやアイテムの学習表現の質を向上させる。
これらの学習表現を大規模データセットに適用することで、大幅な改善がもたらされた。
関連論文リスト
- Dissertation: On the Theoretical Foundation of Model Comparison and Evaluation for Recommender System [4.76281731053599]
レコメンダシステムは、ユーザの履歴データを利用して顧客の興味を推測し、パーソナライズされたレコメンデーションを提供する。
協調フィルタリング(Collaborative filtering)は、複数のユーザのレーティングを使用して、欠落したレーティングを予測するレコメンデーションアルゴリズムの1つである。
Recommender システムはより複雑になり、コンテンツベースの属性やユーザインタラクション、コンテキスト情報などの補助的なデータを組み込むことができる。
論文 参考訳(メタデータ) (2024-11-04T06:31:52Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
本稿では,レコメンダシステムのための適応型マルチラウンド検索パラダイムであるAda-Retrievalを提案する。
Ada-Retrievalは、ユーザー表現を反復的に洗練し、全項目領域の潜在的な候補をよりよく捉えます。
論文 参考訳(メタデータ) (2024-01-12T15:26:40Z) - Bayes-enhanced Multi-view Attention Networks for Robust POI
Recommendation [81.4999547454189]
既存の作業では、ユーザによって報告された利用可能なPOIチェックインが、ユーザ行動の真真正な描写であると仮定している。
実際のアプリケーションシナリオでは、主観的および客観的な原因の両方のため、チェックインデータは信頼性が低い。
本稿では,ユーザチェックインの不確実性に対処するため,ベイズ強化型マルチビュー注意ネットワークを提案する。
論文 参考訳(メタデータ) (2023-11-01T12:47:38Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI)レコメンデーションは、ロケーションベースのeコマースにおいて重要なコンポーネントとなっている。
自己教師付きグラフ強化POIレコメンデーション(S2GRec)を次のPOIレコメンデーションのために提案する。
特に,グローバル・トランジション・グラフと局所軌道グラフの両方からの協調的な信号を組み込むために,グラフ強化セルフアテンテート・レイヤを考案した。
論文 参考訳(メタデータ) (2022-10-22T17:29:34Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - A Systematic Analysis on the Impact of Contextual Information on
Point-of-Interest Recommendation [6.346772579930929]
我々は、異なるコンテキストモデルを提案し、異なる主要なコンテキスト情報の融合をPOIレコメンデーションで分析する。
この結果から,地理的影響や時間的影響をモデル化することで,推奨品質が向上する一方で,他のコンテキスト情報をすべてレコメンデーションモデルに融合させることが必ずしも最善の戦略ではないことが示唆された。
論文 参考訳(メタデータ) (2022-01-20T12:41:12Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
レコメンデーションの研究は、ニューラルネットワークに基づく新しいレコメンダーモデルの発明にシフトした。
近年,神経リコメンデータモデルの開発が著しい進展を遂げている。
論文 参考訳(メタデータ) (2021-04-27T08:03:52Z) - Reciprocal Recommender Systems: Analysis of State-of-Art Literature,
Challenges and Opportunities towards Social Recommendation [14.944946561487535]
Reciprocal Recommender System (RRS)は、データ駆動型パーソナライズされた意思決定支援ツールである。
RRSは、ユーザの好み、ニーズ、行動に基づいて、ユーザ関連のデータを処理し、フィルタリングし、推奨する。
本稿では,RSのアルゴリズム,融合プロセス,基礎的特徴に着目し,現状のRS研究を要約する。
論文 参考訳(メタデータ) (2020-07-17T09:48:46Z) - A Survey on Conversational Recommender Systems [11.319431345375751]
会話レコメンデータシステム(CRS)は異なるアプローチを採用し、よりリッチなインタラクションをサポートする。
CRSに対する関心は、ここ数年で大幅に増加した。
この開発は主に自然言語処理の分野における著しい進歩によるものである。
論文 参考訳(メタデータ) (2020-04-01T18:00:47Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z) - Relation Embedding for Personalised POI Recommendation [34.043989803855844]
本稿では,POIレコメンデーションのための翻訳ベース埋め込みを提案する。
提案手法は,低時間関係空間における時間的内容と意味的内容を効果的に符号化する。
動的個人利害の推論を強化するために,ユーザPOIグラフ上に複合因数分解フレームワークを構築した。
論文 参考訳(メタデータ) (2020-02-09T22:26:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。