論文の概要: Why Not Together? A Multiple-Round Recommender System for Queries and Items
- arxiv url: http://arxiv.org/abs/2412.10787v1
- Date: Sat, 14 Dec 2024 10:49:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:53:57.642867
- Title: Why Not Together? A Multiple-Round Recommender System for Queries and Items
- Title(参考訳): なぜ一緒にならないのか? クエリとアイテムのための複数ルートリコメンダシステム
- Authors: Jiarui Jin, Xianyu Chen, Weinan Zhang, Yong Yu, Jun Wang,
- Abstract要約: 推薦システムの基本的な技術は、ユーザの嗜好をモデル化することであり、クエリや項目がユーザ関心の象徴的な表現として広く使われている。
両タイプの相乗効果を生かしたMultiple-round Auto Guess-and-Update System(MAGUS)を提案する。
- 参考スコア(独自算出の注目度): 37.709748983831034
- License:
- Abstract: A fundamental technique of recommender systems involves modeling user preferences, where queries and items are widely used as symbolic representations of user interests. Queries delineate user needs at an abstract level, providing a high-level description, whereas items operate on a more specific and concrete level, representing the granular facets of user preference. While practical, both query and item recommendations encounter the challenge of sparse user feedback. To this end, we propose a novel approach named Multiple-round Auto Guess-and-Update System (MAGUS) that capitalizes on the synergies between both types, allowing us to leverage both query and item information to form user interests. This integrated system introduces a recursive framework that could be applied to any recommendation method to exploit queries and items in historical interactions and to provide recommendations for both queries and items in each interaction round. Empirical results from testing 12 different recommendation methods demonstrate that integrating queries into item recommendations via MAGUS significantly enhances the efficiency, with which users can identify their preferred items during multiple-round interactions.
- Abstract(参考訳): 推薦システムの基本的な技術は、ユーザの嗜好をモデル化することであり、クエリや項目がユーザ関心の象徴的な表現として広く使われている。
クエリは、ユーザニーズを抽象レベルで記述し、ハイレベルな説明を提供するが、アイテムはより具体的で具体的なレベルで動作し、ユーザの好みの細かい面を表す。
実際には、クエリとアイテムのレコメンデーションの両方が、疎いユーザフィードバックの課題に直面している。
この目的のために,マルチラウンド自動案内更新システム (MAGUS) という新しい手法を提案する。
この統合システムでは、過去のインタラクションにおけるクエリやアイテムの活用や、各インタラクションラウンドにおけるクエリとアイテムの両方のレコメンデーションを行うために、任意のレコメンデーションメソッドに適用可能な再帰的フレームワークを導入している。
12種類のレコメンデーションメソッドの試験結果から,クエリをMAGUS経由で項目レコメンデーションに統合することで,複数ラウンドのインタラクションにおいてユーザが好みの項目を識別できる効率が著しく向上することが示された。
関連論文リスト
- MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRecは、マルチモーダルレコメンデーションに生成パラダイムを導入することを目指している。
まず,階層的な量子化手法であるGraph CF-RQVAEを考案し,各項目にRec-IDを割り当てる。
次に、Transformerベースのレコメンデータをトレーニングし、過去のインタラクションシーケンスに基づいて、ユーザが推奨するアイテムのRec-IDを生成する。
論文 参考訳(メタデータ) (2024-04-25T12:11:27Z) - FineRec:Exploring Fine-grained Sequential Recommendation [28.27273649170967]
本稿では,属性-選択対のレビューを精査し,逐次レコメンデーションを微妙に処理する新しいフレームワークを提案する。
各属性に対して、ユニークな属性固有のユーザ-オピニオン-イットグラフが作成され、対応する意見が異質なユーザノードとアイテムノードをリンクするエッジとして機能する。
本稿では,属性固有のユーザ/イテム表現をすべての属性にわたって統合し,レコメンデーションを生成するためのインタラクション駆動型融合機構を提案する。
論文 参考訳(メタデータ) (2024-04-19T16:04:26Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
本稿では,レコメンダシステムのための適応型マルチラウンド検索パラダイムであるAda-Retrievalを提案する。
Ada-Retrievalは、ユーザー表現を反復的に洗練し、全項目領域の潜在的な候補をよりよく捉えます。
論文 参考訳(メタデータ) (2024-01-12T15:26:40Z) - Modeling Multiple User Interests using Hierarchical Knowledge for
Conversational Recommender System [13.545276171601769]
会話レコメンデーションシステム(CRS)は,自然言語会話による項目レコメンデーションの実践的応用である。
我々は、CRSにおいてそのような複数のユーザ関心をモデル化することを提案する。
ReDial データセットを用いて実験を行った結果,提案手法はベースライン CR-Walker よりも幅広い項目を推奨できることがわかった。
論文 参考訳(メタデータ) (2023-03-01T08:15:48Z) - Hierarchical Conversational Preference Elicitation with Bandit Feedback [36.507341041113825]
提案システムでは,各ラウンドで推薦するキータームかアイテムのいずれかを選択することができる。
実世界のデータセットを調査・分析し、先行研究と異なり、キーターム報酬は主に代表品の報酬に影響されていることを確認する。
我々は、この観測結果とキータームとアイテム間の階層構造を利用する2つの帯域幅アルゴリズム、Hier-UCBとHier-LinUCBを提案する。
論文 参考訳(メタデータ) (2022-09-06T05:35:24Z) - Everyone's Preference Changes Differently: Weighted Multi-Interest
Retrieval Model [18.109035867113217]
MIPモデル(Multi-Interest Preference)は、ユーザのシーケンシャルエンゲージメントをより効果的に利用することで、ユーザにとってマルチエンゲージメントを生み出すアプローチである。
本手法の有効性を実証するため,様々な産業規模のデータセットを用いて大規模な実験を行った。
論文 参考訳(メタデータ) (2022-07-14T04:29:54Z) - Aspect-Oriented Summarization through Query-Focused Extraction [23.62412515574206]
実際のユーザのニーズは、特定のクエリではなく、ユーザが興味を持っているデータセットの幅広いトピックという側面に、より深く浸透することが多い。
抽出クエリに焦点を絞った学習手法をベンチマークし、モデルを訓練するための対照的な拡張手法を提案する。
我々は2つのアスペクト指向データセットを評価し、この手法が一般的な要約システムよりも焦点を絞った要約を得られることを発見した。
論文 参考訳(メタデータ) (2021-10-15T18:06:21Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
コールドスタートユーザに対しては,属性を問うと同時に,ユーザに対して対話的に商品を推薦する,対話型レコメンデーションを提案する。
会話型トンプソンサンプリング(ConTS)モデルでは,最大報酬の腕を選択することで,対話型レコメンデーションにおけるすべての質問を一意に解決する。
論文 参考訳(メタデータ) (2020-05-23T08:56:37Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
我々はレコメンデータシステムを逐次レコメンデーション問題として定式化する。
我々は,ComiRec と呼ばれる連続的なレコメンデーションのための新しい制御可能な多目的フレームワークを提案する。
私たちのフレームワークは、オフラインのAlibaba分散クラウドプラットフォームにうまくデプロイされています。
論文 参考訳(メタデータ) (2020-05-19T10:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。